cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323024 Numbers with exactly three distinct exponents in their prime factorization, or three distinct parts in their prime signature.

Original entry on oeis.org

360, 504, 540, 600, 720, 756, 792, 936, 1008, 1176, 1188, 1200, 1224, 1350, 1368, 1400, 1404, 1440, 1500, 1584, 1620, 1656, 1836, 1872, 1960, 2016, 2052, 2088, 2160, 2200, 2232, 2250, 2268, 2352, 2400, 2448, 2484, 2520, 2600, 2646, 2664, 2736, 2800, 2880, 2904
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

Positions of 3's in A071625.
Numbers k such that A001221(A181819(k)) = 3.
The asymptotic density of this sequence is (6/Pi^2) * Sum_{n>=2, n squarefree} r(n)/((n-1)*psi(n)) = 0.030575..., where psi is the Dedekind psi function (A001615), and r(n) = Sum_{d|n, 1Amiram Eldar, Oct 18 2020

Examples

			1500 = 2^2 * 3^1 * 5^3 has three distinct exponents {1, 2, 3}, so belongs to the sequence.
52500 = 2^2 * 3^1 * 5^4 * 7^1 has three distinct exponents {1, 2, 4}, so belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    tom[n_]:=Length[Union[Last/@If[n==1,{},FactorInteger[n]]]];
    Select[Range[1000],tom[#]==3&]
  • PARI
    is(n) = #Set(factor(n)[, 2]) == 3 \\ David A. Corneth, Jan 02 2019