cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A071625 Number of distinct exponents when n is factorized as a product of primes.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

First term greater than 2 is a(360) = 3.
From Michel Marcus, Apr 24 2016: (Start)
A006939(n) gives the least m such that a(m) = n.
A062770 is the sequence of integers m such that a(m) = 1. (End)
We define the k-th omega of n to be Omega(red^{k-1}(n)) where Omega = A001222 and red^{k} is the k-th functional iteration of A181819. The first two omegas are A001222 and A001221, while this sequence is the third, and A323022 is the fourth. The zeroth omega is not uniquely determined from prime signature, but one possible choice is A056239 (sum of prime indices). - Gus Wiseman, Jan 02 2019
Sanna (2020) proved that for each k>=1, the sequence of numbers n with A071625(n) = k has an asymptotic density A_k = (6/Pi^2) * Sum_{n>=1, n squarefree} rho_k(n)/psi(n), where psi is the Dedekind psi function (A001615), and rho_k(n) is defined by rho_1(n) = 1 if n = 1 and 0 otherwise, rho_{k+1}(n) = 0 if n = 1 and (1/(n-1)) * Sum_{d|n, dAmiram Eldar, Oct 18 2020

Examples

			n = 5040 = 2^4*(3*5)^2*7, three different exponents arise:4,2 and 1; so a(5040)=3.
		

Crossrefs

Programs

  • Maple
    # Using function 'PrimeSignature' from A124010.
    a := n -> nops(convert(PrimeSignature(n), set)):
    seq(a(n), n = 1..105); # Peter Luschny, Jun 15 2025
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]];
    lf[x_] := Length[FactorInteger[x]];
    ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}];
    Table[Length[Union[ep[w]]], {w, 1, 256}]
    (* Second program: *)
    {0}~Join~Array[Length@ Union@ FactorInteger[#][[All, -1]] &, 104, 2] (* Michael De Vlieger, Apr 10 2019 *)
  • PARI
    a(n) = #Set(factor(n)[,2]); \\ Michel Marcus, Mar 12 2015
    
  • Python
    from sympy import factorint
    def a(n): return len(set(factorint(n).values()))
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Sep 01 2022

A014311 Numbers with exactly 3 ones in binary expansion.

Original entry on oeis.org

7, 11, 13, 14, 19, 21, 22, 25, 26, 28, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 131, 133, 134, 137, 138, 140, 145, 146, 148, 152, 161, 162, 164, 168, 176, 193, 194, 196, 200, 208, 224, 259, 261, 262, 265, 266, 268, 273, 274, 276, 280, 289, 290, 292, 296, 304
Offset: 1

Views

Author

Al Black (gblack(AT)nol.net)

Keywords

Comments

Equivalently, sums of three distinct powers of 2.
Appears to give all n such that 64 is the highest power of 2 dividing A005148(n). - Benoit Cloitre, Jun 22 2002
From Gus Wiseman, Oct 05 2020: (Start)
These are numbers k such that the k-th composition in standard order has length 3. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. The sequence together with the corresponding standard compositions begins:
7: (1,1,1) 44: (2,1,3) 97: (1,5,1)
11: (2,1,1) 49: (1,4,1) 98: (1,4,2)
13: (1,2,1) 50: (1,3,2) 100: (1,3,3)
14: (1,1,2) 52: (1,2,3) 104: (1,2,4)
19: (3,1,1) 56: (1,1,4) 112: (1,1,5)
21: (2,2,1) 67: (5,1,1) 131: (6,1,1)
22: (2,1,2) 69: (4,2,1) 133: (5,2,1)
25: (1,3,1) 70: (4,1,2) 134: (5,1,2)
26: (1,2,2) 73: (3,3,1) 137: (4,3,1)
28: (1,1,3) 74: (3,2,2) 138: (4,2,2)
35: (4,1,1) 76: (3,1,3) 140: (4,1,3)
37: (3,2,1) 81: (2,4,1) 145: (3,4,1)
38: (3,1,2) 82: (2,3,2) 146: (3,3,2)
41: (2,3,1) 84: (2,2,3) 148: (3,2,3)
42: (2,2,2) 88: (2,1,4) 152: (3,1,4)
(End)

Crossrefs

Cf. A038465 (base 3), A038471 (base 4), A038475 (base 5).
Cf. A081091 (primes), A212190 (squares), A212192 (triangular numbers), A173589 (Fibbinary).
Cf. A057168.
Cf. A000079, A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (Hammingweight = 1, 2, ..., 9).
A000217(n-2) counts compositions into three parts.
A001399(n-3) = A069905(n) = A211540(n+2) counts the unordered case.
A001399(n-6) = A069905(n-3) = A211540(n-1) counts the unordered strict case.
A001399(n-6)*6 = A069905(n-3)*6 = A211540(n-1)*6 counts the strict case.
A014612 is an unordered version, with strict case A007304.
A337453 is the strict case.
A337461 counts the coprime case.
A033992 lists numbers divisible by exactly three different primes.
A323024 lists numbers with exactly three different prime multiplicities.

Programs

  • C
    unsigned hakmem175(unsigned x) {
        unsigned s, o, r;
        s = x & -x;  r = x + s;
        o = r ^ x;  o = (o >> 2) / s;
        return r | o;
    }
    unsigned A014311(int n) {
        if (n == 1) return 7;
        return hakmem175(A014311(n - 1));
    }  // Peter Luschny, Jan 01 2014
    
  • Haskell
    a014311 n = a014311_list !! (n-1)
    a014311_list = [2^x + 2^y + 2^z |
                    x <- [2..], y <- [1..x-1], z <- [0..y-1]]
    -- Reinhard Zumkeller, May 03 2012
    
  • Mathematica
    Select[Range[200], (Count[IntegerDigits[#, 2], 1] == 3)&]
    nn = 8; Flatten[Table[2^i + 2^j + 2^k, {i, 2, nn}, {j, 1, i - 1}, {k, 0, j - 1}]] (* T. D. Noe, Nov 05 2013 *)
  • PARI
    for(n=0,10^3,if(hammingweight(n)==3,print1(n,", "))); \\ Joerg Arndt, Mar 04 2014
    
  • PARI
    print1(t=7);for(i=2,50,print1(","t=A057168(t))) \\ M. F. Hasler, Aug 27 2014
    
  • Python
    A014311_list = [2**a+2**b+2**c for a in range(2,6) for b in range(1,a) for c in range(b)] # Chai Wah Wu, Jan 24 2021
    
  • Python
    from itertools import islice
    def A014311_gen(): # generator of terms
        yield (n:=7)
        while True: yield (n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b)
    A014311_list = list(islice(A014311_gen(),20)) # Chai Wah Wu, Mar 10 2025
    
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A014311(n): return (1<<(r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+(1<<(a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+(1<Chai Wah Wu, Mar 10 2025

Formula

A000120(a(n)) = 3. - Reinhard Zumkeller, May 03 2012
Start with A084468. If n is in sequence, then 2n is too. - Ralf Stephan, Aug 16 2013
a(n+1) = A057168(a(n)). - M. F. Hasler, Aug 27 2014
a(n) = 2^A056558(n-1) + 2^A194848(n-1) + 2^A194847(n-1). - Ridouane Oudra, Sep 06 2020
Sum_{n>=1} 1/a(n) = A367110 = 1.428591545852638123996854844400537952781688750906133068397189529775365950039... (calculated using Baillie's irwinSums.m, see Links). - Amiram Eldar, Feb 14 2022

Extensions

Extension and program by Olivier Gérard

A323025 Numbers with exactly four distinct exponents in their prime factorization, or four distinct parts in their prime signature.

Original entry on oeis.org

75600, 105840, 113400, 118800, 126000, 140400, 151200, 158760, 178200, 183600, 198000, 205200, 210600, 211680, 232848, 234000, 237600, 246960, 248400, 252000, 261360, 275184, 275400, 280800, 283500, 294000, 302400, 306000, 307800, 313200, 315000, 334800
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

Positions of 4's in A071625.
Numbers k such that A001221(A181819(k)) = 4.
Is a(n) ~ c * n for some c? - David A. Corneth, Jan 09 2019
The asymptotic density of this sequence is (6/Pi^2) * Sum_{n>=2, n squarefree} r(n)/((n-1)*psi(n)) = 0.00035750... (corresponding to c = 2797.1... in the question above, whose answer is affirmative), where psi is the Dedekind psi function (A001615), and r(n) = Sum_{d_1|n, 1Amiram Eldar, Oct 18 2020

Examples

			126000 = 2^4 * 3^2 * 5^3 * 7^1 has four distinct exponents {1, 2, 3, 4}, so belongs to the sequence.
831600 = 2^4 * 3^3 * 5^2 * 7^1 * 11^1 has four distinct exponents {1, 2, 3, 4}, so belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    tom[n_]:=Length[Union[Last/@If[n==1,{},FactorInteger[n]]]];
    Select[Range[100000],tom[#]==4&]
  • PARI
    is(n) = #Set(factor(n)[, 2]) == 4 \\ David A. Corneth, Jan 09 2019

A323055 Numbers with exactly two distinct exponents in their prime factorization, or two distinct parts in their prime signature.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2019

Keywords

Comments

The first term is A006939(2) = 12.
First differs from A059404 in lacking 360, whose prime signature has three distinct parts.
Positions of 2's in A071625.
Numbers k such that A001221(A181819(k)) = 2.
The asymptotic density of this sequence is (6/Pi^2) * Sum_{n>=2, n squarefree} 1/((n-1)*psi(n)) = 0.3611398..., where psi is the Dedekind psi function (A001615) (Sanna, 2020). - Amiram Eldar, Oct 18 2020

Examples

			3000 = 2^3 * 3^1 * 5^3 has two distinct exponents {1, 3}, so belongs to the sequence.
		

Crossrefs

One distinct exponent: A062770 or A072774.
Two distinct exponents: this sequence.
Three distinct exponents: A323024.
Four distinct exponents: A323025.
Five distinct exponents: A323056.

Programs

  • Maple
    isA323055 := proc(n)
        local eset;
        eset := {};
        for pf in ifactors(n)[2] do
            eset := eset union {pf[2]} ;
        end do:
        simplify(nops(eset) = 2 ) ;
    end proc:
    for n from 12 to 1000 do
        if isA323055(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 09 2019
  • Mathematica
    Select[Range[100],Length[Union[Last/@FactorInteger[#]]]==2&]

A323056 Numbers with exactly five distinct exponents in their prime factorization, or five distinct parts in their prime signature.

Original entry on oeis.org

174636000, 206388000, 244490400, 261954000, 269892000, 274428000, 288943200, 291060000, 301644000, 309582000, 343980000, 349272000, 365148000, 366735600, 377848800, 383292000, 404838000, 411642000, 412776000, 422301600, 433414800, 449820000, 452466000, 457380000
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2019

Keywords

Comments

The first term is A006939(5) = 174636000.
Positions of 5's in A071625.
Numbers k such that A001221(A181819(k)) = 5.

Examples

			174636000 = 2^5 * 3^4 * 5^3 * 7^2 * 11^1 has five distinct exponents so belongs to the sequence.
		

Crossrefs

One distinct exponent: A062770 or A072774.
Two distinct exponents: A323055.
Three distinct exponents: A323024.
Four distinct exponents: A323025.
Five distinct exponents: A323056.

Programs

  • Mathematica
    Select[Range[300000000],Length[Union[Last/@FactorInteger[#]]]==5&]
  • PARI
    is(n) = #Set(factor(n)[, 2]) == 5 \\ David A. Corneth, Jan 12 2019

Extensions

a(13)-a(24) from Daniel Suteu, Jan 12 2019

A324206 Numbers with exactly six distinct exponents in their prime factorization, or six distinct parts in their prime signature.

Original entry on oeis.org

5244319080000, 6197831640000, 6857955720000, 7342046712000, 7664774040000, 7866478620000, 8241072840000, 8676964296000, 8740531800000, 9278410680000, 9296747460000, 9578467080000, 9601138008000, 10286933580000, 10329719400000, 10488638160000, 10598658840000, 10705345560000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			6197831640000 = 2^6 * 3^5 * 5^4 * 7^3 * 11 * 13^2 is in the sequence as there are 6 distinct exponents; 1 through 6.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 6

A324207 Numbers with exactly seven distinct exponents in their prime factorization, or seven distinct parts in their prime signature.

Original entry on oeis.org

2677277333530800000, 2992251137475600000, 3164055030536400000, 3501054974617200000, 3536296798834800000, 3622198745365200000, 3748188266943120000, 4015916000296200000, 4189151592465840000, 4207150095548400000, 4280780335431600000, 4373290124002800000, 4429677042750960000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			2677277333530800000 = 2^7 * 3^6 * 5^5 * 7^4 * 11^3 * 13^2 * 17 is in the sequence. There are exactly 7 distinct exponents; 1 through 7 in it.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 7

A324208 Numbers with exactly eight distinct exponents in their prime factorization, or eight distinct parts in their prime signature.

Original entry on oeis.org

25968760179275365452000000, 29023908435660702564000000, 30690352939143613716000000, 31435867585438600284000000, 33959147926744708668000000, 34300982696689921212000000, 36356264250985511632800000, 37151479873700163972000000, 38953140268913048178000000, 39267640824717421116000000
Offset: 1

Views

Author

David A. Corneth, Feb 17 2019

Keywords

Examples

			29023908435660702564000000 = 2^8 * 3^7 * 5^6 * 7^5 * 11^4 * 13^3 * 17 * 19^2 is in the sequence as there are exactly 8 distinct exponents; 1 through 8.
		

Crossrefs

Programs

  • PARI
    is(n) = #Set(factor(n)[, 2]) == 8
Showing 1-8 of 8 results.