cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A327444 a(n) is the maximum absolute value of the coefficients of the quotient polynomial R_(prime(n)#)/Product_{j=1..n} R_(prime(j)), where prime(n)# is the n-th primorial number A002110(n) and R_k = (x^k - 1)/(x - 1).

Original entry on oeis.org

1, 1, 2, 4, 7, 20, 34, 93
Offset: 1

Views

Author

Patrick A. Thomas, Sep 16 2019

Keywords

Comments

The values of the first few quotients, when x=10, are in A323060. (A file therein enumerates the coefficients of the fifth quotient.)
Conjecture: a(n) = exp((6n - 13 + (-1)^n)/8), approximately.

Examples

			R_(510510)/[R_(2)*R_(3)*R_(5)*R_(7)*R_(11)*R_(13)*R_(17)] = 1 - 6x + 16x^2 - 25x^3 + ... - 34x^11313 + ... + x^510458 (and no other coefficient exceeds 34 in absolute value), so a(7) = 34.
		

Crossrefs

Programs

  • PARI
    R(k) = (x^k - 1)/(x - 1);
    a(n) = {my(v = Vec(R(prod(k=1, n, prime(k)))/prod(k=1, n, R(prime(k))))); vecmax(apply(x->abs(x), v));} \\ Michel Marcus, Sep 16 2019
Showing 1-1 of 1 results.