cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323071 a(n) = gcd(n, 1+A060681(n)).

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 1, 13, 2, 1, 1, 17, 2, 19, 1, 3, 2, 23, 1, 1, 2, 1, 1, 29, 2, 31, 1, 1, 2, 1, 1, 37, 2, 3, 1, 41, 2, 43, 1, 1, 2, 47, 1, 1, 2, 1, 1, 53, 2, 5, 1, 3, 2, 59, 1, 61, 2, 1, 1, 1, 2, 67, 1, 1, 2, 71, 1, 73, 2, 3, 1, 1, 2, 79, 1, 1, 2, 83, 1, 1, 2, 1, 1, 89, 2, 1, 1, 3, 2, 1, 1, 97, 2, 1, 1, 101, 2, 103, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Comments

Differs from A055023 at n = 55, 105, 155, ..., (A323070).

Crossrefs

Programs

Formula

a(n) = gcd(n, 1+A060681(n)).
a(n) = n/A323072(n).

A340079 a(n) = n / gcd(n, 1+A018804(n)), where A018804(n) = Sum_{k=1..n} gcd(k, n).

Original entry on oeis.org

1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 12, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 4, 1, 15, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 3, 1, 44, 9, 23, 1, 48, 49, 25, 51, 52, 1, 27, 11, 56, 19, 29, 1, 60, 1, 31, 63, 64, 65, 33, 1, 68, 69, 35, 1, 72, 1, 37, 75, 76, 77, 39, 1, 80, 81, 41, 1, 84, 85, 43, 87, 88
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2020

Keywords

Comments

It is conjectured that this is 1 iff n is 1 or a prime. See Thomas Ordowski's Oct 22 2014 comment in A018804.

Crossrefs

Cf. also A055032, A323072 (similar but different sequences).

Programs

Formula

a(n) = n / A340078(n) = n / gcd(n, 1+A018804(n)).

A323070 Numbers k such that A055023(k) != A323071(k), where A323071(k) = gcd(k, 1+A060681(k)).

Original entry on oeis.org

55, 105, 155, 203, 253, 355, 405, 455, 497, 595, 655, 689, 705, 737, 755, 791, 955, 979, 1005, 1027, 1055, 1081, 1221, 1255, 1305, 1355, 1379, 1555, 1605, 1655, 1673, 1703, 1711, 1751, 1855, 1905, 1955, 1967, 2065, 2155, 2189, 2205, 2255, 2261, 2329, 2455, 2505, 2555, 2755, 2805, 2849, 2855, 3055
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Comments

Equivalently, numbers k for which A055032(k) != A323072(k).
Neither primes nor prime powers present?

Crossrefs

Programs

A339913 a(n) = x/gcd(n,x), where x = 1+A060681(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 5, 7, 3, 1, 7, 1, 4, 11, 9, 1, 5, 1, 11, 5, 6, 1, 13, 21, 7, 19, 15, 1, 8, 1, 17, 23, 9, 29, 19, 1, 10, 9, 21, 1, 11, 1, 23, 31, 12, 1, 25, 43, 13, 35, 27, 1, 14, 9, 29, 13, 15, 1, 31, 1, 16, 43, 33, 53, 17, 1, 35, 47, 18, 1, 37, 1, 19, 17, 39, 67, 20, 1, 41, 55, 21, 1, 43, 69, 22, 59, 45, 1, 23
Offset: 1

Views

Author

Antti Karttunen, Jan 01 2021

Keywords

Crossrefs

Programs

  • PARI
    A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1])));
    A339913(n) = { my(x=1+A060681(n)); (x/gcd(n,x)); };

Formula

a(n) = (1+A060681(n)) / A323071(n).
Showing 1-4 of 4 results.