cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A323164 a(n) = A000720(A323075(n)).

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 4, 2, 5, 4, 6, 3, 5, 4, 7, 2, 8, 5, 5, 4, 9, 6, 5, 3, 8, 5, 10, 4, 11, 7, 9, 2, 10, 8, 12, 5, 8, 5, 13, 4, 14, 9, 11, 6, 15, 5, 14, 3, 10, 8, 16, 5, 11, 10, 8, 4, 17, 11, 18, 7, 14, 9, 16, 2, 19, 10, 15, 8, 20, 12, 21, 5, 10, 8, 19, 5, 22, 13, 11, 4, 23, 14, 15, 9, 17, 11, 24, 6, 22, 15, 14, 5, 19, 14, 25, 3, 19, 10, 26, 8, 27, 16, 20
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2019

Keywords

Comments

One less than the restricted growth sequence transform of A323075.

Crossrefs

Cf. A000079, A000720, A000918, A323075, A323165 (ordinal transform).

Programs

Formula

a(n) = A000720(A323075(n)).
For all odd primes p, a(2^k * p - 2^(k+1) + 2) = a(A000079(k) * p - A000918(k+1)) = A000720(p) for k >= 0. - After David A. Corneth's similar observation for A323075.

A323165 Ordinal transform of A323075 (and also of A323164).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 4, 1, 5, 1, 3, 4, 5, 1, 2, 5, 4, 2, 6, 1, 6, 1, 2, 2, 6, 2, 3, 1, 7, 4, 8, 1, 7, 1, 3, 2, 3, 1, 9, 2, 5, 3, 5, 1, 10, 3, 4, 6, 8, 1, 4, 1, 3, 3, 4, 2, 7, 1, 5, 2, 7, 1, 2, 1, 11, 6, 8, 2, 12, 1, 2, 5, 9, 1, 4, 3, 5, 2, 6, 1, 4, 2, 4, 5, 13, 3, 6, 1, 6, 4, 7, 1, 9, 1, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n - n/FactorInteger[n][[1, 1]]; (* f is A060681 *)
    g[n_] := g[n] = If[n == 1+f[n], n, g[1+f[n]]]; (* g is A323075 *)
    b[_] = 0;
    a[n_] := a[n] = With[{t = g[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1])));
    A323075(n) = { my(nn = 1+A060681(n)); if(nn==n,n,A323075(nn)); };
    v323165 = ordinal_transform(vector(up_to,n,A323075(n)));
    A323165(n) = v323165[n];

A323076 Number of iterations of map x -> 1+(x-(largest divisor d < x)), starting from x=n, needed to reach a fixed point, which is always either a prime or 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 1, 2, 0, 4, 0, 1, 2, 2, 0, 1, 3, 3, 1, 2, 0, 3, 0, 1, 1, 5, 1, 1, 0, 2, 2, 3, 0, 3, 0, 1, 1, 2, 0, 4, 1, 4, 2, 2, 0, 3, 2, 1, 3, 4, 0, 1, 0, 2, 1, 2, 1, 6, 0, 2, 1, 2, 0, 1, 0, 3, 3, 3, 1, 4, 0, 1, 3, 4, 0, 1, 2, 2, 1, 2, 0, 3, 1, 1, 2, 5, 2, 2, 0, 5, 1, 3, 0, 3, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Comments

Differs from A064918 at n = 25, 48, 51, 69, 75, 81, 85, 94, 95, 99, 100, 111, 115, 121, ...

Crossrefs

Cf. A060681, A064918, A323075 (the fixed points reached), A323077, A323079.
Cf. also A039651.

Programs

  • Mathematica
    {0}~Join~Array[-2 + Length@ NestWhileList[1 + (# - Divisors[#][[-2]]) &, #, UnsameQ, All] &, 104, 2] (* Michael De Vlieger, Jan 04 2019 *)
  • PARI
    A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1])));
    A323076(n) = { my(nn = 1+A060681(n)); if(nn==n,0,1+A323076(nn)); };

Formula

If n == (1+A060681(n)), then a(n) = 0, otherwise a(n) = 1 + a(1+A060681(n)).
Showing 1-3 of 3 results.