cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A323155 a(n) = Product_{d|n, d-1 is prime} (d-1)^(1+A286561(n,d-1)), where A286561(n,k) gives the k-valuation of n (for k > 1).

Original entry on oeis.org

1, 1, 2, 3, 1, 20, 1, 21, 2, 1, 1, 3960, 1, 13, 2, 21, 1, 340, 1, 57, 2, 1, 1, 1275120, 1, 1, 2, 39, 1, 2900, 1, 651, 2, 1, 1, 201960, 1, 37, 2, 399, 1, 10660, 1, 129, 2, 1, 1, 119861280, 1, 1, 2, 3, 1, 18020, 1, 1911, 2, 1, 1, 643678200, 1, 61, 2, 651, 1, 20, 1, 201, 2, 13, 1, 4617209520, 1, 73, 2, 111, 1, 20, 1, 31521, 2, 1, 1, 175186440, 1, 1, 2, 903, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A323155(n) = { my(m=1); fordiv(n, d, if(isprime(d-1), m *= (d-1)^(1+valuation(n,d-1)))); (m); }; \\ Antti Karttunen, Jan 09 2019

Formula

a(n) = Product_{d|n, d>2} [(d-1)^(1+A286561(n,d-1))]^A010051(d-1).

A323157 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = A000265(A323155(n)) for all n, except with f(1) = 0.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 2, 2, 2, 6, 2, 7, 2, 5, 2, 8, 2, 9, 2, 2, 2, 10, 2, 2, 2, 11, 2, 12, 2, 13, 2, 2, 2, 14, 2, 15, 2, 16, 2, 17, 2, 18, 2, 2, 2, 19, 2, 2, 2, 3, 2, 20, 2, 21, 2, 2, 2, 22, 2, 23, 2, 13, 2, 4, 2, 24, 2, 7, 2, 25, 2, 26, 2, 27, 2, 4, 2, 28, 2, 2, 2, 29, 2, 2, 2, 30, 2, 31, 2, 3, 2, 2, 2, 32, 2, 33, 2, 9, 2, 34, 2, 35, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
A323156(i) = A323156(j) => a(i) = a(j),
a(i) = a(j) => A322977(i) = A322977(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n/2^valuation(n, 2));
    A323155(n) = { my(m=1); fordiv(n, d, if(isprime(d-1), m *= (d-1)^(1+valuation(n,d-1)))); (m); };
    A323157aux(n) = if(1==n,0,A000265(A323155(n)));
    v323157 = rgs_transform(vector(up_to, n, A323157aux(n)));
    A323157(n) = v323157[n];

A322702 a(n) is the product of primes p such that p+1 divides n.

Original entry on oeis.org

1, 1, 2, 3, 1, 10, 1, 21, 2, 1, 1, 330, 1, 13, 2, 21, 1, 170, 1, 57, 2, 1, 1, 53130, 1, 1, 2, 39, 1, 290, 1, 651, 2, 1, 1, 5610, 1, 37, 2, 399, 1, 5330, 1, 129, 2, 1, 1, 2497110, 1, 1, 2, 3, 1, 9010, 1, 273, 2, 1, 1, 10727970, 1, 61, 2, 651, 1, 10, 1, 201, 2
Offset: 1

Views

Author

Daniel Suteu, Dec 23 2018

Keywords

Comments

In general, a(n) is the product of A072627(n) distinct prime factors, with a(n) = 1 iff A072627(n) = 0.

Examples

			For n=12, the divisors of 12 are {1, 2, 3, 4, 6, 12}. The prime numbers p, such that p+1 is a divisor of 12, are {2, 3, 5, 11}, therefore a(12) = 2 * 3 * 5 * 11 = 330.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(`if`(isprime(d-1), d-1, 1), d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 29 2018
  • Mathematica
    Array[Apply[Times, Select[Divisors@ #, PrimeQ[# - 1] &] - 1 /. {} -> {1}] &, 69] (* Michael De Vlieger, Jan 07 2019 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, if(isprime(d[k]-1), d[k]-1, 1));

Formula

a(n) = Product_{p prime, p+1 divides n} p.
a(n) = denominator of Sum_{p prime, p+1 divides n} 1/p.
a(n) = Product_{d|n, d-1 is prime} (d-1), where d runs over the divisors of n.
a(2*n + 1) = 2, iff n == 1 (mod 3), else a(2*n + 1) = 1.
A001221(a(n)) = A072627(n). - Antti Karttunen, Jan 12 2019
Showing 1-3 of 3 results.