cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323229 a(n) = binomial(2*n, n+1) + 1.

Original entry on oeis.org

1, 2, 5, 16, 57, 211, 793, 3004, 11441, 43759, 167961, 646647, 2496145, 9657701, 37442161, 145422676, 565722721, 2203961431, 8597496601, 33578000611, 131282408401, 513791607421, 2012616400081, 7890371113951, 30957699535777, 121548660036301, 477551179875953
Offset: 0

Views

Author

Peter Luschny, Feb 12 2019

Keywords

Crossrefs

Cf. A323230 (d=0), A260878 (d=1), this sequence (d=2).
Cf. A212382.

Programs

  • Magma
    [Binomial(2*n, n+1) + 1: n in [0..30]]; // G. C. Greubel, Dec 26 2021
    
  • Maple
    aList := proc(len) local gf, ser; assume(Im(x) > 0);
    gf := (1-3*x)/(2*(x-1)*x) + (I*(1-2*x))/(2*x*sqrt(4*x-1));
    ser := series(gf, x, len+2):
    seq(coeff(ser, x, n), n=0..len) end: aList(27);
  • Mathematica
    Table[Binomial[2n, n+1] + 1, {n, 0, 26}]
  • Sage
    [binomial(2*n, n+1) + 1 for n in (0..30)] # G. C. Greubel, Dec 26 2021

Formula

Let G(x) = (1-3*x)/(2*(x-1)*x) + (I*(1-2*x))/(2*x*sqrt(4*x-1)) with Im(x) > 0, then a(n) = [x^n] G(x). The generating function G(x) satisfies the differential equation 6*x^3 - 4*x + 1 = (8*x^5 - 22*x^4 + 21*x^3 - 8*x^2 + x)*diff(G(x), x) + (4*x^4 - 14*x^3 + 17*x^2 - 8*x + 1)*G(x).
a(n) = A212382(2*n, n). - Alois P. Heinz, May 03 2019