cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A323211 Level 1 of Pascal's pyramid. T(n, k) triangle read by rows for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 5, 7, 5, 2, 1, 1, 2, 6, 11, 11, 6, 2, 1, 1, 2, 7, 16, 21, 16, 7, 2, 1, 1, 2, 8, 22, 36, 36, 22, 8, 2, 1, 1, 2, 9, 29, 57, 71, 57, 29, 9, 2, 1, 1, 2, 10, 37, 85, 127, 127, 85, 37, 10, 2, 1
Offset: 0

Views

Author

Peter Luschny, Feb 11 2019

Keywords

Comments

Pascal's pyramid is defined by recurrence. P(0) is Pascal's triangle. Now assume P(n-1) already constructed. Then P(n) is found by the steps: (1) Add 1 to each term of P(n-1). (2) Add at the left and at the right side a diagonal consisting all of 1s and complement the top with the rows 1 and 1, 1. A similar construction starting from the Pascal's triangle and subtracting 1 from all terms leads to A014473.

Examples

			Triangle starts:
                                1
                              1,  1
                            1,  2,  1
                          1,  2,  2,  1
                        1,  2,  3,  2,  1
                      1,  2,  4,  4,  2,  1
                    1,  2,  5,  7,  5,  2,  1
                 1,  2,  6,  11, 11,  6,  2,  1
               1,  2,  7,  16,  21, 16,  7,  2,  1
             1,  2,  8,  22, 36, 36,  22,  8,  2,  1
           1,  2,  9,  29, 57,  71,  57, 29,  9,  2,  1
		

Crossrefs

Differs from A323231 only in the second term.
Row sums are A323227.

Programs

  • Magma
    A323211:= func< n,k | n le 1 select 1 else 1 + Binomial(n-2,k-1) >;
    [A323211(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Sep 26 2024
    
  • Maple
    T := (n, k) -> `if`(n=1, 1, binomial(n-2, k-1) + 1):
    seq(seq(T(n, k), k=0..n), n=0..10);
    # Alternative:
    T := proc(n, k) option remember;
    if k = n then return 1 fi; if k < 2 then return k+1 fi;
    T(n-1, k-1) + T(n-1, k) - 1 end:
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A323211[n_, k_]:= If[n<2, 1, Binomial[n-2, k-1] +1];
    Table[A323211[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 26 2024 *)
  • SageMath
    def A323211(n,k): return 1 if (n<2) else 1 + binomial(n-2,k-1)
    flatten([[A323211(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 26 2024

Formula

T(n, k) = binomial(n-2, k-1) + 1 if n != 1 else 1.
G.f.: (1 + 3*y + y^2 + x^4*y^2*(1 + y)^2 + x^2*y*(2 + 5*y + 2*y^2) - x^3*y*(1 + 4*y + 4*y^2 + y^3) - x*(1 + 5*y + 5*y^2 + y^3)/((1 - x)*(1 + y)^2*(1 - x*y)*(1 - x - x*y)). - Stefano Spezia, Sep 26 2024
From G. C. Greubel, Sep 26 2024: (Start)
T(n, n-k) = T(n, k) (symmetry).
T(2*n, n) = A323230(n).
Sum_{k=0..n} (-1)^k*T(n, k) = (n+1 mod 2) - [n=2].
Sum_{k=0..floor(n/2)} T(n-k, k) = Fibonacci(n-2) + (1/4)*(2*n + 3 + (-1)^n) +[n=0] - [n=1]. (End)
Showing 1-1 of 1 results.