cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323232 a(n) = 2^n*J(n, 1/2) where J(n, x) are the Jacobsthal polynomials as defined in A322942.

Original entry on oeis.org

1, 3, 9, 51, 225, 1083, 5049, 23811, 111825, 525963, 2472489, 11625171, 54655425, 256967643, 1208146329, 5680180131, 26705711025, 125558574123, 590321410569, 2775432824691, 13048869758625, 61350071873403, 288441173689209, 1356124096054851, 6375901677678225
Offset: 0

Views

Author

Peter Luschny, Jan 07 2019

Keywords

Comments

Is it true that p prime and p not 2 or 5 implies that a(p) is squarefree?

Examples

			The first few prime factorizations of a(n):
   1| 3;
   2| 3^2;
   3| 3   * 17;
   4| 3^2 * 5^2;
   5| 3   * 19^2;
   6| 3^3 * 11 * 17;
   7| 3   * 7937;
   8| 3^2 * 5^2 * 7 * 71;
   9| 3   * 17 * 10313;
  10| 3^2 * 19^2 * 761;
  11| 3   * 3875057;
  12| 3^3 * 5^2 * 11 * 17 * 433;
  13| 3   * 85655881;
  14| 3^2 * 13 * 1301 * 7937;
  15| 3   * 17 * 19^2 * 308521;
  16| 3^2 * 5^2 * 7 * 71 * 79 * 3023;
  17| 3   * 67 * 624669523;
  18| 3^4 * 11 * 17 * 3779 * 10313;
  19| 3   * 419 * 2207981563;
		

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 3^n else 3*Self(n-1) +8*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 27 2021
  • Maple
    a := proc(n) option remember:
        if n < 3 then return [1, 3, 9][n+1] fi;
        8*a(n-2) + 3*a(n-1) end:
    seq(a(n), n=0..24);
  • Mathematica
    LinearRecurrence[{3, 8}, {1, 3, 9}, 25]
  • Sage
    def a():
        yield 1
        yield 3
        c = 3; b = 9
        while True:
            yield b
            a = (b << 2) + (c << 3) - b
            c = b
            b = a
    A323232 = a()
    [next(A323232) for _ in range(30)]
    

Formula

a(n) = 3*a(n-1) + 8*a(n-2) for n >= 3.
a(n) is an odd integer and 3 | a(n) if n > 0.
a(n) = Sum_{k=0..n} 2^(n - k)*A322942(n, k).
a(n) = [x^n] (8*x^2 - 1)/(8*x^2 + 3*x - 1).
Let s = sqrt(41), u = -1/(s+3) and v = 1/(s-3); then
a(n) = (3/s)*16^n*(v^n - u^n) for n >= 1.
a(n) = n! [x^n](1 + (6*exp(3*x/2)*sinh(s*x/2))/s).
a(n) = n! [x^n](1 + (3/s)*(exp((3 + s)*x/2) - exp((3 - s)*x/2))).
a(n)/a(n+1) -> 2/(sqrt(41) + 3) = (sqrt(41) - 3)/16 for n -> oo.