cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323238 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = A291750(n) for all n, except for odd numbers n > 1, f(n) = 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 3, 14, 3, 15, 3, 16, 3, 17, 3, 18, 3, 19, 3, 20, 3, 21, 3, 22, 3, 23, 3, 24, 3, 17, 3, 25, 3, 26, 3, 27, 3, 28, 3, 29, 3, 30, 3, 31, 3, 23, 3, 32, 3, 33, 3, 34, 3, 33, 3, 35, 3, 36, 3, 37, 3, 38, 3, 39, 3, 40, 3, 41, 3, 42, 3, 43, 3, 44, 3, 31, 3, 33, 3, 45, 3, 46, 3, 47, 3, 48, 3, 49, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2019

Keywords

Comments

For all i, j:
A319701(i) = A319701(j) => a(i) = a(j),
a(i) = a(j) => A146076(i) = A146076(j),
a(i) = a(j) => A319697(i) = A319697(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    Aux323238(n) = if((n>1)&&(n%2),0,(1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n)));
    v323238 = rgs_transform(vector(up_to, n, Aux323238(n)));
    A323238(n) = v323238[n];

A323241 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j) for all i, j, where f(n<=2) = -n, f(n) = 0 if n is an odd number > 1, and f(n) = A300226(n) for even numbers >= 4.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 3, 5, 3, 7, 3, 5, 3, 8, 3, 9, 3, 7, 3, 5, 3, 10, 3, 5, 3, 7, 3, 11, 3, 12, 3, 5, 3, 13, 3, 5, 3, 10, 3, 11, 3, 7, 3, 5, 3, 14, 3, 15, 3, 7, 3, 16, 3, 10, 3, 5, 3, 17, 3, 5, 3, 18, 3, 11, 3, 7, 3, 19, 3, 20, 3, 5, 3, 7, 3, 11, 3, 14, 3, 5, 3, 17, 3, 5, 3, 10, 3, 21, 3, 7, 3, 5, 3, 22, 3, 23, 3, 24, 3, 11, 3, 10, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 07 2019

Keywords

Comments

For all i, j:
A319701(i) = A319701(j) => a(i) = a(j),
a(i) = a(j) => A007814(i) = A007814(j).
a(i) = a(j) => A183063(i) = A183063(j).

Crossrefs

Programs

  • PARI
    up_to = 10000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A052126(n) = if(1==n, n, n/vecmax(factor(n)[, 1]));
    A319988(n) = ((n>1)&&(factor(n)[omega(n),2]>1));
    A323241aux(n) = if(n<=2,-n,if(n%2,0,[A052126(n), A319988(n)]));
    v323241 = rgs_transform(vector(up_to,n,A323241aux(n)));
    A323241(n) = v323241[n];

A323367 Lexicographically earliest such sequence a that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = 0 for odd primes, and f(n) = A323366(n) for any other number.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 26, 29, 3, 19, 3, 30, 31, 32, 3, 33, 34, 35, 36, 37, 3, 38, 39, 40, 41, 42, 3, 43, 3, 44, 45, 46, 47, 48, 3, 49, 50, 51, 3, 52, 3, 53, 54, 55, 56, 51, 3, 57, 58, 59, 3, 37, 60, 61, 62, 63, 3, 64, 65, 66, 56, 67, 65, 68, 3, 69, 70, 71, 3, 72, 3, 73, 47
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2019

Keywords

Comments

Restricted growth sequence transform of function f, where f(n) = 0 for odd primes, and for any other number, f(n) = [A000035(n), A003557(n), A173557(n)].
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A322587(i) = A322587(j).
a(i) = a(j) => A323237(i) = A323237(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    Aux323367(n) = if((n>2)&&isprime(n),0,[(n%2), A003557(n), A173557(n)]);
    v323367 = rgs_transform(vector(up_to, n, Aux323367(n)));
    A323367(n) = v323367[n];

A323366 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => A000035(i) = A000035(j) and A003557(i) = A003557(j) and A173557(i) = A173557(j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 13, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 34, 38, 39, 25, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 39, 52, 36, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 56, 65, 72, 73, 74, 75, 76, 49, 77, 78, 79, 80, 81, 82, 68, 83, 56, 84, 68, 85, 86, 87, 88, 89, 90, 91, 92, 93, 60
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A295887(i) = A295887(j),
a(i) = a(j) => A323237(i) = A323237(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    v323366 = rgs_transform(vector(up_to, n, [(n%2), A003557(n), A173557(n)]));
    A323366(n) = v323366[n];
Showing 1-4 of 4 results.