cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323250 Sequence lists numbers k > 1 such that k^3 == d(k) (mod sigma(k)), where d = A000005 and sigma = A000203.

Original entry on oeis.org

2, 110, 152, 506, 830, 882, 8138, 13826, 15878, 19514, 37634, 93242, 99002, 153216, 218978, 576902, 998978, 2259758, 3041798, 5326106, 6654278, 7709006, 7772762, 31833002, 44564438, 106657202, 279422306, 1702668664, 1774448104, 2132364366, 3932536504, 3966201002, 4954728904
Offset: 1

Views

Author

Paolo P. Lava, Jan 08 2019

Keywords

Comments

From Jinyuan Wang, Feb 03 2019: (Start)
Conjecture: All terms are even.
a(34) > 5*10^9. (End)

Examples

			sigma(2) = 3 and 2^3 mod 3 = 2 = d(2).
		

Crossrefs

Programs

  • Maple
    with(numtheory): op(select(n->n^3 mod sigma(n)=tau(n),[$1..7772762]));
  • Mathematica
    Select[Range[10^8], PowerMod[#1, 3, #3] == #2 & @@ Prepend[DivisorSigma[{0, 1}, #], #] &] (* Michael De Vlieger, Jan 18 2019 *)
  • PARI
    for(k=1,10^8,x=sigma(k);if(Mod(k,x)^3==Mod(numdiv(k),x),print1(k,", "))) \\ Jinyuan Wang, Feb 02 2019

Formula

Solutions of k^3 mod sigma(k) = d(k).

Extensions

a(24)-a(25) from Michael De Vlieger, Jan 18 2019
a(26)-a(33) from Jinyuan Wang, Feb 02 2019