cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323253 a(n) is the smallest number k such that factorizations of n consecutive integers starting at k have the same excess of number of primes counted with multiplicity over number of primes counted without multiplicity (A046660).

Original entry on oeis.org

1, 1, 1, 844, 74849, 671346, 8870025
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 30 2019

Keywords

Comments

Smallest number k such that n or more consecutive integers starting at k have the same number of proper prime power divisors.
a(8) > 10^9. - Vaclav Kotesovec, Sep 01 2019
a(8) <= 254023231417746. - David A. Corneth, Sep 01 2019
a(8) > 10^13. - Giovanni Resta, Sep 05 2019

Examples

			671346 = 2 * 3^2 * 13 * 19 * 151,
671347 = 17^2 * 23 * 101,
671348 = 2^2 * 47 * 3571,
671349 = 3 * 7^2 * 4567,
671350 = 2 * 5^2 * 29 * 463,
671351 = 53^2 * 239.
These the first 6 consecutive numbers with the same number of proper prime power divisors, so a(6) = 671346.
		

Crossrefs

Programs

  • Mathematica
    Do[find = 0; k = 0; While[find == 0, k++; If[Length[Union[Table[PrimeOmega[j] - PrimeNu[j], {j, k, k + n - 1}]]] == 1, find = 1; Print[k]]], {n, 1, 5}] (* Vaclav Kotesovec, Sep 01 2019 *)
    (* faster program *) fak = Table[f = FactorInteger[j]; Total[Transpose[f][[2]]] - Length[f], {j, 1, 10000000}]; m = Max[fak]; Table[Min[Table[SequencePosition[fak, ConstantArray[j, n]], {j, 0, m}]], {n, 1, 7}] (* Vaclav Kotesovec, Sep 01 2019 *)
  • PARI
    excess(n) = bigomega(n) - omega(n);
    score(n) = my(t=excess(n)); for(k=1, oo, if(excess(n+k) != t, return(k)));
    upto(nn) = my(n=1); for(k=1, nn, while(score(k) >= n, print1(k, ", "); n++)); \\ Daniel Suteu, Sep 01 2019

Extensions

a(7) from Daniel Suteu and Vaclav Kotesovec, Sep 01 2019