cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323290 Numerator of the sum of inverse products of cycle sizes in all permutations of [n].

Original entry on oeis.org

1, 1, 3, 19, 107, 641, 51103, 1897879, 7860361, 505249081, 40865339743, 1355547261301, 244350418462637, 34907820791828741, 1949845703291363567, 1136592473036395958917, 31690844708764028510969, 2681369908698254192692979, 768531714669026186032238737
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2019

Keywords

Examples

			1/1, 1/1, 3/2, 19/6, 107/12, 641/20, 51103/360, 1897879/2520, 7860361/1680, 505249081/15120, 40865339743/151200, ... = A323290/A323291
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1)*(j-1)!/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..20);
  • Mathematica
    nmax = 20; Numerator[CoefficientList[Series[Exp[PolyLog[2, x]], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Feb 12 2024 *)

Formula

E.g.f.: exp(polylog(2,x)) (for fractions A323290(n)/A323291(n)). - Vaclav Kotesovec, Feb 12 2024
A323290(n)/A323291(n) ~ exp(Pi^2/6) * n! / n^2. - Vaclav Kotesovec, Feb 14 2024