cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323339 Numerator of the sum of inverse products of parts in all compositions of n.

Original entry on oeis.org

1, 1, 3, 7, 11, 347, 3289, 1011, 38371, 136553, 4320019, 12528587, 40771123, 29346499543, 129990006917, 1927874590951, 903657004321, 437445829053473, 12456509813711881, 187206004658210129, 1974369484466728177, 1967745662306280217, 21401375717067880189
Offset: 0

Views

Author

Alois P. Heinz, Jan 11 2019

Keywords

Comments

Numerators of the INVERT transform of reciprocal integers.

Examples

			1/1, 1/1, 3/2, 7/3, 11/3, 347/60, 3289/360, 1011/70, 38371/1680, 136553/3780, 4320019/75600, 12528587/138600, 40771123/285120, ... = A323339/A323340
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
         `if`(n=0, 1, add(b(n-j)/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..25);
  • Mathematica
    nmax = 20; Numerator[CoefficientList[Series[1/(1 + Log[1-x]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 12 2024 *)

Formula

G.f. for fractions: 1 / (1 + log(1 - x)). - Ilya Gutkovskiy, Nov 12 2019
a(n) = numerator( A007840(n)/n! ). - Alois P. Heinz, Jan 04 2024
A323339(n)/A323340(n) ~ exp(n) / (exp(1) - 1)^(n+1). - Vaclav Kotesovec, Feb 12 2024

A322364 Numerator of the sum of inverse products of parts in all partitions of n.

Original entry on oeis.org

1, 1, 3, 11, 7, 27, 581, 4583, 2327, 69761, 775643, 147941, 30601201, 30679433, 10928023, 6516099439, 445868889691, 298288331489, 7327135996801, 1029216937671847, 14361631943741, 837902013393451, 2766939485246012129, 274082602410356881, 835547516381094139939
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2018

Keywords

Examples

			1/1, 1/1, 3/2, 11/6, 7/3, 27/10, 581/180, 4583/1260, 2327/560, 69761/15120, 775643/151200, 147941/26400, 30601201/4989600, 30679433/4633200 ... = A322364/A322365
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +b(n-i, min(i, n-i))/i)
        end:
    a:= n-> numer(b(n$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0||i==1, 1, b[n, i-1] + b[n-i, Min[i, n-i]]/i];
    a[n_] := Numerator[b[n, n]];
    a /@ Range[0, 30] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
  • PARI
    a(n) = {my(s=0); forpart(p=n, s += 1/vecprod(Vec(p))); numerator(s);} \\ Michel Marcus, Apr 29 2020

Formula

Limit_{n-> infinity} a(n)/(n*A322365(n)) = exp(-gamma) = A080130.

A322380 Numerator of the sum of inverse products of parts in all strict partitions of n.

Original entry on oeis.org

1, 1, 1, 5, 7, 37, 79, 173, 101, 127, 1033, 1571, 200069, 2564519, 5126711, 25661369, 532393, 431100529, 1855391, 1533985991, 48977868113, 342880481117, 342289639579, 435979161889, 1308720597671, 373092965489, 7824703695283, 24141028973, 31250466692609
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2018

Keywords

Comments

a(n)/A322381(n) = A007838(n)/A000142(n) is the probability that a random permutation of [n] has distinct cycle sizes. - Geoffrey Critzer, Feb 23 2022

Examples

			1/1, 1/1, 1/2, 5/6, 7/12, 37/60, 79/120, 173/280, 101/168, 127/210, 1033/1680, 1571/2640, 200069/332640, 2564519/4324320, 5126711/8648640, ... = A322380/A322381
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +b(n-i, min(i-1, n-i))/i))
        end:
    a:= n-> numer(b(n$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
    a[n_] := Numerator[b[n, n]];
    a /@ Range[0, 30] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)

Formula

Limit_{n->infinity} a(n)/A322381(n) = exp(-gamma) = A080130.
Sum_{n>=0} a(n)/A322381(n)*x^n = Product_{i>=1} (1 + x^i/i). - Geoffrey Critzer, Feb 23 2022

A323291 Denominator of the sum of inverse products of cycle sizes in all permutations of [n].

Original entry on oeis.org

1, 1, 2, 6, 12, 20, 360, 2520, 1680, 15120, 151200, 554400, 9979200, 129729600, 605404800, 27243216000, 54486432000, 308756448000, 5557616064000, 8122669632000, 351982350720000, 22174888095360000, 25676186215680000, 3740164458750720000, 67322960257512960000
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2019

Keywords

Crossrefs

See A323290 for more information.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1)*(j-1)!/j, j=1..n))
        end:
    a:= n-> denom(b(n)):
    seq(a(n), n=0..25);
  • Mathematica
    nmax = 30; Denominator[CoefficientList[Series[Exp[PolyLog[2, x]], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Feb 12 2024 *)

Formula

E.g.f.: exp(polylog(2,x)) (for fractions A323290(n)/A323291(n)). - Vaclav Kotesovec, Feb 12 2024
Showing 1-4 of 4 results.