cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006906 a(n) is the sum of products of terms in all partitions of n.

Original entry on oeis.org

1, 1, 3, 6, 14, 25, 56, 97, 198, 354, 672, 1170, 2207, 3762, 6786, 11675, 20524, 34636, 60258, 100580, 171894, 285820, 480497, 791316, 1321346, 2156830, 3557353, 5783660, 9452658, 15250216, 24771526, 39713788, 64011924, 102199026, 163583054, 259745051
Offset: 0

Views

Author

Keywords

Comments

a(0) = 1 since the only partition of 0 is the empty partition. The product of its terms is the empty product, namely 1.
Same parity as A000009. - Jon Perry, Feb 12 2004

Examples

			Partitions of 0 are {()} whose products are {1} whose sum is 1.
Partitions of 1 are {(1)} whose products are {1} whose sum is 1.
Partitions of 2 are {(2),(1,1)} whose products are {2,1} whose sum is 3.
Partitions of 3 are 3 => {(3),(2,1),(1,1,1)} whose products are {3,2,1} whose sum is 6.
Partitions of 4 are {(4),(3,1),(2,2),(2,1,1),(1,1,1,1)} whose products are {4,3,4,2,1} whose sum is 14.
		

References

  • G. Labelle, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006906 n = p 1 n 1 where
       p _ 0 s = s
       p k m s | mReinhard Zumkeller, Dec 07 2011
  • Maple
    A006906 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add( A078308(k)*procname(n-k),k=1..n)/n ;
        end if;
    end proc: # R. J. Mathar, Dec 14 2011
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +add(b(n-i*j, i-1)*(i^j), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 25 2013
  • Mathematica
    (* a[n,k]=sum of products of partitions of n into parts <= k *) a[0,0]=1; a[n_,0]:=0; a[n_,k_]:=If[k>n, a[n,n], a[n,k] = a[n,k-1] + k a[n-k,k] ]; a[n_]:=a[n,n] (* Dean Hickerson, Aug 19 2007 *)
    Table[Total[Times@@@IntegerPartitions[n]],{n,0,35}] (* Harvey P. Dale, Jan 14 2013 *)
    nmax = 40; CoefficientList[Series[Product[1/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)

Formula

The limit of a(n+3)/a(n) is 3. However, the limit of a(n+1)/a(n) does not exist. In fact, the sequence {a(n+1)/a(n)} has three limit points, which are about 1.4422447, 1.4422491 and 1.4422549. (See the Links entry.) - Dean Hickerson, Aug 19 2007
a(n) ~ c(n mod 3) 3^(n/3), where c(0)=97923.26765718877..., c(1)=97922.93936857030... and c(2)=97922.90546334208... - Dean Hickerson, Aug 19 2007
G.f.: 1 / Product_{k>=1} (1-k*x^k).
G.f.: 1 + Sum_{n>=1} n*x^n / Product_{k=1..n} (1-k*x^k) = 1 + Sum_{n>=1} n*x^n / Product_{k>=n} (1-k*x^k). - Joerg Arndt, Mar 23 2011
a(n) = (1/n)*Sum_{k=1..n} A078308(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
O.g.f.: exp( Sum_{n>=1} Sum_{k>=1} k^n * x^(n*k) / n ). - Paul D. Hanna, Sep 18 2017
O.g.f.: exp( Sum_{n>=1} Sum_{k=1..n} A008292(n,k)*x^(n*k)/(n*(1-x^n)^(n+1)) ), where A008292 is the Eulerian numbers. - Paul D. Hanna, Sep 18 2017

Extensions

More terms from Vladeta Jovovic, Oct 04 2001
Edited by N. J. A. Sloane, May 19 2007

A080130 Decimal expansion of exp(-gamma).

Original entry on oeis.org

5, 6, 1, 4, 5, 9, 4, 8, 3, 5, 6, 6, 8, 8, 5, 1, 6, 9, 8, 2, 4, 1, 4, 3, 2, 1, 4, 7, 9, 0, 8, 8, 0, 7, 8, 6, 7, 6, 5, 7, 1, 0, 3, 8, 6, 9, 2, 5, 1, 5, 3, 1, 6, 8, 1, 5, 4, 1, 5, 9, 0, 7, 6, 0, 4, 5, 0, 8, 7, 9, 6, 7, 0, 7, 4, 2, 8, 5, 6, 3, 7, 1, 3, 2, 8, 7, 1, 1, 5, 8, 9, 3, 4, 2, 1, 4, 3, 5, 8, 7, 6, 7, 3, 1
Offset: 0

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

By Mertens's third theorem, lim_{k->oo} (H_{k-1}*Product_{prime p<=k} (1-1/p)) = exp(-gamma), where H_n is the n-th harmonic number. Let F(x) = lim_{n->oo} ((Sum_{k<=n} 1/k^x)*(Product_{prime p<=n} (1-1/p^x))) for real x in the interval 0 < x < 1. Consider the function F(s) of the complex variable s, but without the analytic continuation of the zeta function, in the critical strip 0 < Re(s) < 1. - Thomas Ordowski, Jan 26 2023

Examples

			0.56145948356688516982414321479088078676571...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.5 p. 29, 2.7 p. 117 and 5.4 p. 285.

Crossrefs

Programs

  • Magma
    R:= RealField(100); Exp(-EulerGamma(R)); // G. C. Greubel, Aug 28 2018
  • Maple
    evalf(exp(-gamma), 120);  # Alois P. Heinz, Feb 24 2022
  • Mathematica
    RealDigits[N[Exp[-EulerGamma], 200]][[1]] (* Arkadiusz Wesolowski, Aug 26 2012 *)
  • PARI
    default(realprecision, 100); exp(-Euler) \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals lim inf_{n->oo} phi(n)*log(log(n))/n. - Arkadiusz Wesolowski, Aug 26 2012
From Alois P. Heinz, Dec 05 2018: (Start)
Equals lim_{n->oo} A322364(n)/(n*A322365(n)).
Equals lim_{n->oo} A322380(n)/A322381(n). (End)
Equals lim_{k->oo} log(k)*Product_{prime p<=k} (1-1/p). - Amiram Eldar, Jul 09 2020
Equals lim_{n->oo} A007838(n)/A000142(n). - Alois P. Heinz, Feb 24 2022
Equals Product_{k>=1} (1+1/k)*exp(-1/k). - Amiram Eldar, Mar 20 2022
Equals A001113^(-A001620). - Omar E. Pol, Dec 14 2022
Equals lim_{n->oo} (A001008(p_n-1)/A002805(p_n-1))*(A038110(n+1)/A060753(n+1)), where p_n = A000040(n). - Thomas Ordowski, Jan 26 2023

A323339 Numerator of the sum of inverse products of parts in all compositions of n.

Original entry on oeis.org

1, 1, 3, 7, 11, 347, 3289, 1011, 38371, 136553, 4320019, 12528587, 40771123, 29346499543, 129990006917, 1927874590951, 903657004321, 437445829053473, 12456509813711881, 187206004658210129, 1974369484466728177, 1967745662306280217, 21401375717067880189
Offset: 0

Views

Author

Alois P. Heinz, Jan 11 2019

Keywords

Comments

Numerators of the INVERT transform of reciprocal integers.

Examples

			1/1, 1/1, 3/2, 7/3, 11/3, 347/60, 3289/360, 1011/70, 38371/1680, 136553/3780, 4320019/75600, 12528587/138600, 40771123/285120, ... = A323339/A323340
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
         `if`(n=0, 1, add(b(n-j)/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..25);
  • Mathematica
    nmax = 20; Numerator[CoefficientList[Series[1/(1 + Log[1-x]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 12 2024 *)

Formula

G.f. for fractions: 1 / (1 + log(1 - x)). - Ilya Gutkovskiy, Nov 12 2019
a(n) = numerator( A007840(n)/n! ). - Alois P. Heinz, Jan 04 2024
A323339(n)/A323340(n) ~ exp(n) / (exp(1) - 1)^(n+1). - Vaclav Kotesovec, Feb 12 2024

A177208 Numerators of exponential transform of 1/n.

Original entry on oeis.org

1, 1, 3, 17, 19, 81, 8351, 184553, 52907, 1768847, 70442753, 1096172081, 22198464713, 195894185831, 42653714271997, 30188596935106763, 20689743895700791, 670597992748852241, 71867806446352961329, 8445943795439038164379, 379371134635840861537
Offset: 0

Views

Author

Keywords

Comments

b(n) = a(n)/A177209(n) is the sum over all set partitions of [n] of the product of the reciprocals of the part sizes.
Numerators of moments of Dickman-De Bruijn distribution as shown on page 257 of Cellarosi and Sinai. [Jonathan Vos Post, Jan 07 2012]

Examples

			For n=4, there is 1 set partition with a single part of size 4, 4 with sizes [3,1], 3 with sizes [2,2], 6 with sizes [2,1,1], and 1 with sizes [1,1,1,1]; so b(4) = 1/4 + 4/(3*1) + 3/(2*2) + 6/(2*1*1) + 1/(1^4) = 1/4 + 4/3 + 3/4 + 3 + 1 = 19/4.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), pp. 228-230.
  • Knuth, Donald E., and Luis Trabb Pardo. "Analysis of a simple factorization algorithm." Theoretical Computer Science 3.3 (1976): 321-348. See Eq. (6.6) and (6.7), page 334.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*b(n-j)/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..25); # Alois P. Heinz, Jan 08 2012
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Sum[Binomial[n-1, j-1]*b[n-j]/j, {j, 1, n}]]; a[n_] := Numerator[b[n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)
  • PARI
    Vec(serlaplace(exp(sum(n=1,30,x^n/(n*n!),O(x^31)))))

Formula

E.g.f. for fractions is exp(f(z)), where f(z) = sum(k>0, z^k/(k*k!)) = integral(0..z,(exp(t)-1)/t dt) = Ei(z) - gamma - log(z) = -Ein(-z). Here gamma is Euler's constant, and Ei and Ein are variants of the exponential integral.
Knuth & Trabb-Pardo (6.7) gives a recurrence. - N. J. A. Sloane, Nov 09 2022

A322365 Denominator of the sum of inverse products of parts in all partitions of n.

Original entry on oeis.org

1, 1, 2, 6, 3, 10, 180, 1260, 560, 15120, 151200, 26400, 4989600, 4633200, 1528800, 851350500, 54486432000, 34306272000, 793945152000, 105594705216000, 1396755360000, 77534573760000, 243923769048960000, 23087434930560000, 67322960257512960000, 4371620795942400000
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2018

Keywords

Crossrefs

See A322364 for more information.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +b(n-i, min(i, n-i))/i)
        end:
    a:= n-> denom(b(n$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1]+b[n-i, Min[i, n-i]]/i];
    a[n_] := Denominator[b[n, n]];
    a /@ Range[0, 30] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
  • PARI
    a(n) = {my(s=0); forpart(p=n, s += 1/vecprod(Vec(p))); denominator(s);} \\ Michel Marcus, Apr 29 2020

A322380 Numerator of the sum of inverse products of parts in all strict partitions of n.

Original entry on oeis.org

1, 1, 1, 5, 7, 37, 79, 173, 101, 127, 1033, 1571, 200069, 2564519, 5126711, 25661369, 532393, 431100529, 1855391, 1533985991, 48977868113, 342880481117, 342289639579, 435979161889, 1308720597671, 373092965489, 7824703695283, 24141028973, 31250466692609
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2018

Keywords

Comments

a(n)/A322381(n) = A007838(n)/A000142(n) is the probability that a random permutation of [n] has distinct cycle sizes. - Geoffrey Critzer, Feb 23 2022

Examples

			1/1, 1/1, 1/2, 5/6, 7/12, 37/60, 79/120, 173/280, 101/168, 127/210, 1033/1680, 1571/2640, 200069/332640, 2564519/4324320, 5126711/8648640, ... = A322380/A322381
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +b(n-i, min(i-1, n-i))/i))
        end:
    a:= n-> numer(b(n$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
    a[n_] := Numerator[b[n, n]];
    a /@ Range[0, 30] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)

Formula

Limit_{n->infinity} a(n)/A322381(n) = exp(-gamma) = A080130.
Sum_{n>=0} a(n)/A322381(n)*x^n = Product_{i>=1} (1 + x^i/i). - Geoffrey Critzer, Feb 23 2022

A323290 Numerator of the sum of inverse products of cycle sizes in all permutations of [n].

Original entry on oeis.org

1, 1, 3, 19, 107, 641, 51103, 1897879, 7860361, 505249081, 40865339743, 1355547261301, 244350418462637, 34907820791828741, 1949845703291363567, 1136592473036395958917, 31690844708764028510969, 2681369908698254192692979, 768531714669026186032238737
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2019

Keywords

Examples

			1/1, 1/1, 3/2, 19/6, 107/12, 641/20, 51103/360, 1897879/2520, 7860361/1680, 505249081/15120, 40865339743/151200, ... = A323290/A323291
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1)*(j-1)!/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..20);
  • Mathematica
    nmax = 20; Numerator[CoefficientList[Series[Exp[PolyLog[2, x]], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Feb 12 2024 *)

Formula

E.g.f.: exp(polylog(2,x)) (for fractions A323290(n)/A323291(n)). - Vaclav Kotesovec, Feb 12 2024
A323290(n)/A323291(n) ~ exp(Pi^2/6) * n! / n^2. - Vaclav Kotesovec, Feb 14 2024
Showing 1-7 of 7 results.