A274804
The exponential transform of sigma(n).
Original entry on oeis.org
1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0
Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 0..531
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
Cf.
A177208,
A177209,
A006351,
A197505,
A144180,
A256180,
A033462,
A198046,
A134954,
A145460,
A188489,
A005432,
A029725,
A124213,
A002801.
-
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)
A323339
Numerator of the sum of inverse products of parts in all compositions of n.
Original entry on oeis.org
1, 1, 3, 7, 11, 347, 3289, 1011, 38371, 136553, 4320019, 12528587, 40771123, 29346499543, 129990006917, 1927874590951, 903657004321, 437445829053473, 12456509813711881, 187206004658210129, 1974369484466728177, 1967745662306280217, 21401375717067880189
Offset: 0
1/1, 1/1, 3/2, 7/3, 11/3, 347/60, 3289/360, 1011/70, 38371/1680, 136553/3780, 4320019/75600, 12528587/138600, 40771123/285120, ... = A323339/A323340
Cf.
A000142,
A007840,
A011782,
A088305,
A177208,
A177209,
A322364,
A322365,
A322380,
A322381,
A323290,
A323291.
-
b:= proc(n) option remember;
`if`(n=0, 1, add(b(n-j)/j, j=1..n))
end:
a:= n-> numer(b(n)):
seq(a(n), n=0..25);
-
nmax = 20; Numerator[CoefficientList[Series[1/(1 + Log[1-x]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 12 2024 *)
A177209
Denominators of exponential transform of 1/n.
Original entry on oeis.org
1, 1, 2, 6, 3, 5, 180, 1260, 105, 945, 9450, 34650, 155925, 289575, 12612600, 1702701000, 212837625, 1206079875, 21709437750, 412479317250, 2888510625, 21655164155625, 952827222847500, 128158047517500, 16436269594119375
Offset: 0
- Knuth, Donald E., and Luis Trabb Pardo. "Analysis of a simple factorization algorithm." Theoretical Computer Science 3.3 (1976): 321-348. See Eq. (6.6) and (6.7), page 334.
Numerators are in
A177208, see there for more information.
A322364
Numerator of the sum of inverse products of parts in all partitions of n.
Original entry on oeis.org
1, 1, 3, 11, 7, 27, 581, 4583, 2327, 69761, 775643, 147941, 30601201, 30679433, 10928023, 6516099439, 445868889691, 298288331489, 7327135996801, 1029216937671847, 14361631943741, 837902013393451, 2766939485246012129, 274082602410356881, 835547516381094139939
Offset: 0
1/1, 1/1, 3/2, 11/6, 7/3, 27/10, 581/180, 4583/1260, 2327/560, 69761/15120, 775643/151200, 147941/26400, 30601201/4989600, 30679433/4633200 ... = A322364/A322365
- Alois P. Heinz, Table of n, a(n) for n = 0..505
- A. Knopfmacher, J. N. Ridley, Reciprocal sums over partitions and compositions, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
- D. H. Lehmer, On reciprocally weighted partitions, Acta Arithmetica XXI (1972), 379-388.
- D. Zeilberger, N. Zeilberger, Fractional Counting of Integer Partitions, 2018.
Cf.
A000041,
A006906,
A080130,
A177208,
A177209,
A322380,
A322381,
A323290,
A323291,
A323339,
A323340.
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1) +b(n-i, min(i, n-i))/i)
end:
a:= n-> numer(b(n$2)):
seq(a(n), n=0..30);
-
b[n_, i_] := b[n, i] = If[n==0||i==1, 1, b[n, i-1] + b[n-i, Min[i, n-i]]/i];
a[n_] := Numerator[b[n, n]];
a /@ Range[0, 30] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
-
a(n) = {my(s=0); forpart(p=n, s += 1/vecprod(Vec(p))); numerator(s);} \\ Michel Marcus, Apr 29 2020
A322380
Numerator of the sum of inverse products of parts in all strict partitions of n.
Original entry on oeis.org
1, 1, 1, 5, 7, 37, 79, 173, 101, 127, 1033, 1571, 200069, 2564519, 5126711, 25661369, 532393, 431100529, 1855391, 1533985991, 48977868113, 342880481117, 342289639579, 435979161889, 1308720597671, 373092965489, 7824703695283, 24141028973, 31250466692609
Offset: 0
1/1, 1/1, 1/2, 5/6, 7/12, 37/60, 79/120, 173/280, 101/168, 127/210, 1033/1680, 1571/2640, 200069/332640, 2564519/4324320, 5126711/8648640, ... = A322380/A322381
- Alois P. Heinz, Table of n, a(n) for n = 0..1268
- Andreas B. G. Blobel, An Asymptotic Form of the Generating Function Prod_{k=1,oo} (1+x^k/k), arXiv:1904.07808 [math.CO], 2019.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 137.
- A. Knopfmacher and J. N. Ridley, Reciprocal sums over partitions and compositions, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
- D. H. Lehmer, On reciprocally weighted partitions, Acta Arithmetica XXI (1972), 379-388.
- D. Zeilberger, N. Zeilberger, Fractional Counting of Integer Partitions, 2018.
Cf.
A000009,
A000142,
A007838,
A022629,
A080130,
A177208,
A177209,
A322364,
A322365,
A323290,
A323291,
A323339,
A323340.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +b(n-i, min(i-1, n-i))/i))
end:
a:= n-> numer(b(n$2)):
seq(a(n), n=0..30);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
a[n_] := Numerator[b[n, n]];
a /@ Range[0, 30] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)
A193161
E.g.f. A(x) satisfies: A(x/(1-x))/(1-x) = d/dx x*A(x).
Original entry on oeis.org
1, 1, 3, 17, 152, 1944, 33404, 738212, 20316288, 679237248, 27050017152, 1262790237312, 68193683598336, 4212508572109824, 294822473048043264, 23184842446161993984, 2033884583922970558464, 197767395237549512097792, 21194678534706844531458048
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 152*x^4/4! + 1944*x^5/5! + ...
Related expansions:
A(x/(1-x))/(1-x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ...
A(x) + x*A'(x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ...
Also, a(n) appears in the expansion:
B(x) = 1 + x + 3*x^2/2!^2 + 17*x^3/3!^2 + 152*x^4/4!^2 + 1944*x^5/5!^2 + ...
where
log(B(x)) = x + x^2/(2*2!) + x^3/(3*3!) + x^4/(4*4!) + x^5/(5*5!) + ...
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-i)*binomial(n-1, i-1)/i, i=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..25); # Alois P. Heinz, May 11 2016
-
a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ Integrate[ (Exp[t] - 1)/t, {t, 0, x}]], {x, 0, n}]]]; (* Michael Somos, Dec 28 2012 *)
a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ ExpIntegralEi[x] - Log[x] - EulerGamma], {x, 0, n}]]]; (* Michael Somos, Dec 28 2012 *)
Table[Sum[BellY[n, k, 1/Range[n]], {k, 0, n}] n!, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
{a(n)=local(A=1+x,B);for(i=1,n,B=subst(A,x,x/(1-x+x*O(x^n)))/(1-x);A=1+intformal((B-A)/x));n!*polcoeff(A,n)}
-
{a(n)=if(n<0,0,if(n==0,1,(n-1)!*sum(k=0,n-1,binomial(n,k)*a(k)/k!)))}
-
{a(n)=n!^2*polcoeff(exp(sum(m=1,n,x^m/(m*m!))+x*O(x^n)),n)}
A323290
Numerator of the sum of inverse products of cycle sizes in all permutations of [n].
Original entry on oeis.org
1, 1, 3, 19, 107, 641, 51103, 1897879, 7860361, 505249081, 40865339743, 1355547261301, 244350418462637, 34907820791828741, 1949845703291363567, 1136592473036395958917, 31690844708764028510969, 2681369908698254192692979, 768531714669026186032238737
Offset: 0
1/1, 1/1, 3/2, 19/6, 107/12, 641/20, 51103/360, 1897879/2520, 7860361/1680, 505249081/15120, 40865339743/151200, ... = A323290/A323291
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1)*(j-1)!/j, j=1..n))
end:
a:= n-> numer(b(n)):
seq(a(n), n=0..20);
-
nmax = 20; Numerator[CoefficientList[Series[Exp[PolyLog[2, x]], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Feb 12 2024 *)
Showing 1-7 of 7 results.
Comments