cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A274804 The exponential transform of sigma(n).

Original entry on oeis.org

1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The exponential transform [EXP] transforms an input sequence b(n) into the output sequence a(n). The EXP transform is the inverse of the logarithmic transform [LOG], see the Weisstein link and the Sloane and Plouffe reference. This relation goes by the name of Riddell's formula. For information about the logarithmic transform see A274805. The EXP transform is related to the multinomial transform, see A274760 and the second formula.
The definition of the EXP transform, see the second formula, shows that n >= 1. To preserve the identity LOG[EXP[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the exponential transform, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A178867 appear.
We observe that a(0) = 1 and provides no information about any value of b(n), this notwithstanding it is customary to start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the exponential transform of a sequence. The first program uses a formula found by Alois P. Heinz, see A007446 and the first formula. The second program uses the definition of the exponential transform, see the Weisstein link and the second formula. The third program uses information about the inverse of the exponential transform, see A274805.
Some EXP transform pairs are, n >= 1: A000435(n) and A065440(n-1); 1/A000027(n) and A177208(n-1)/A177209(n-1); A000670(n) and A075729(n-1); A000670(n-1) and A014304(n-1); A000045(n) and A256180(n-1); A000290(n) and A033462(n-1); A006125(n) and A197505(n-1); A053549(n) and A198046(n-1); A000311(n) and A006351(n); A030019(n) and A134954(n-1); A038048(n) and A053529(n-1); A193356(n) and A003727(n-1).

Examples

			Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
  • Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
    nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
    nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)

Formula

a(n) = Sum_{j=1..n} (binomial(n-1,j-1) * b(j) * a(n-j)), n >= 1 and a(0) = 1, with b(n) = A000203(n) = sigma(n).
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n!) with b(n) = sigma(n) = A000203(n).

A323339 Numerator of the sum of inverse products of parts in all compositions of n.

Original entry on oeis.org

1, 1, 3, 7, 11, 347, 3289, 1011, 38371, 136553, 4320019, 12528587, 40771123, 29346499543, 129990006917, 1927874590951, 903657004321, 437445829053473, 12456509813711881, 187206004658210129, 1974369484466728177, 1967745662306280217, 21401375717067880189
Offset: 0

Views

Author

Alois P. Heinz, Jan 11 2019

Keywords

Comments

Numerators of the INVERT transform of reciprocal integers.

Examples

			1/1, 1/1, 3/2, 7/3, 11/3, 347/60, 3289/360, 1011/70, 38371/1680, 136553/3780, 4320019/75600, 12528587/138600, 40771123/285120, ... = A323339/A323340
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
         `if`(n=0, 1, add(b(n-j)/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..25);
  • Mathematica
    nmax = 20; Numerator[CoefficientList[Series[1/(1 + Log[1-x]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 12 2024 *)

Formula

G.f. for fractions: 1 / (1 + log(1 - x)). - Ilya Gutkovskiy, Nov 12 2019
a(n) = numerator( A007840(n)/n! ). - Alois P. Heinz, Jan 04 2024
A323339(n)/A323340(n) ~ exp(n) / (exp(1) - 1)^(n+1). - Vaclav Kotesovec, Feb 12 2024

A177208 Numerators of exponential transform of 1/n.

Original entry on oeis.org

1, 1, 3, 17, 19, 81, 8351, 184553, 52907, 1768847, 70442753, 1096172081, 22198464713, 195894185831, 42653714271997, 30188596935106763, 20689743895700791, 670597992748852241, 71867806446352961329, 8445943795439038164379, 379371134635840861537
Offset: 0

Views

Author

Keywords

Comments

b(n) = a(n)/A177209(n) is the sum over all set partitions of [n] of the product of the reciprocals of the part sizes.
Numerators of moments of Dickman-De Bruijn distribution as shown on page 257 of Cellarosi and Sinai. [Jonathan Vos Post, Jan 07 2012]

Examples

			For n=4, there is 1 set partition with a single part of size 4, 4 with sizes [3,1], 3 with sizes [2,2], 6 with sizes [2,1,1], and 1 with sizes [1,1,1,1]; so b(4) = 1/4 + 4/(3*1) + 3/(2*2) + 6/(2*1*1) + 1/(1^4) = 1/4 + 4/3 + 3/4 + 3 + 1 = 19/4.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), pp. 228-230.
  • Knuth, Donald E., and Luis Trabb Pardo. "Analysis of a simple factorization algorithm." Theoretical Computer Science 3.3 (1976): 321-348. See Eq. (6.6) and (6.7), page 334.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*b(n-j)/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..25); # Alois P. Heinz, Jan 08 2012
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Sum[Binomial[n-1, j-1]*b[n-j]/j, {j, 1, n}]]; a[n_] := Numerator[b[n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)
  • PARI
    Vec(serlaplace(exp(sum(n=1,30,x^n/(n*n!),O(x^31)))))

Formula

E.g.f. for fractions is exp(f(z)), where f(z) = sum(k>0, z^k/(k*k!)) = integral(0..z,(exp(t)-1)/t dt) = Ei(z) - gamma - log(z) = -Ein(-z). Here gamma is Euler's constant, and Ei and Ein are variants of the exponential integral.
Knuth & Trabb-Pardo (6.7) gives a recurrence. - N. J. A. Sloane, Nov 09 2022

A322364 Numerator of the sum of inverse products of parts in all partitions of n.

Original entry on oeis.org

1, 1, 3, 11, 7, 27, 581, 4583, 2327, 69761, 775643, 147941, 30601201, 30679433, 10928023, 6516099439, 445868889691, 298288331489, 7327135996801, 1029216937671847, 14361631943741, 837902013393451, 2766939485246012129, 274082602410356881, 835547516381094139939
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2018

Keywords

Examples

			1/1, 1/1, 3/2, 11/6, 7/3, 27/10, 581/180, 4583/1260, 2327/560, 69761/15120, 775643/151200, 147941/26400, 30601201/4989600, 30679433/4633200 ... = A322364/A322365
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +b(n-i, min(i, n-i))/i)
        end:
    a:= n-> numer(b(n$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0||i==1, 1, b[n, i-1] + b[n-i, Min[i, n-i]]/i];
    a[n_] := Numerator[b[n, n]];
    a /@ Range[0, 30] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
  • PARI
    a(n) = {my(s=0); forpart(p=n, s += 1/vecprod(Vec(p))); numerator(s);} \\ Michel Marcus, Apr 29 2020

Formula

Limit_{n-> infinity} a(n)/(n*A322365(n)) = exp(-gamma) = A080130.

A322380 Numerator of the sum of inverse products of parts in all strict partitions of n.

Original entry on oeis.org

1, 1, 1, 5, 7, 37, 79, 173, 101, 127, 1033, 1571, 200069, 2564519, 5126711, 25661369, 532393, 431100529, 1855391, 1533985991, 48977868113, 342880481117, 342289639579, 435979161889, 1308720597671, 373092965489, 7824703695283, 24141028973, 31250466692609
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2018

Keywords

Comments

a(n)/A322381(n) = A007838(n)/A000142(n) is the probability that a random permutation of [n] has distinct cycle sizes. - Geoffrey Critzer, Feb 23 2022

Examples

			1/1, 1/1, 1/2, 5/6, 7/12, 37/60, 79/120, 173/280, 101/168, 127/210, 1033/1680, 1571/2640, 200069/332640, 2564519/4324320, 5126711/8648640, ... = A322380/A322381
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +b(n-i, min(i-1, n-i))/i))
        end:
    a:= n-> numer(b(n$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
    a[n_] := Numerator[b[n, n]];
    a /@ Range[0, 30] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)

Formula

Limit_{n->infinity} a(n)/A322381(n) = exp(-gamma) = A080130.
Sum_{n>=0} a(n)/A322381(n)*x^n = Product_{i>=1} (1 + x^i/i). - Geoffrey Critzer, Feb 23 2022

A193161 E.g.f. A(x) satisfies: A(x/(1-x))/(1-x) = d/dx x*A(x).

Original entry on oeis.org

1, 1, 3, 17, 152, 1944, 33404, 738212, 20316288, 679237248, 27050017152, 1262790237312, 68193683598336, 4212508572109824, 294822473048043264, 23184842446161993984, 2033884583922970558464, 197767395237549512097792, 21194678534706844531458048
Offset: 0

Views

Author

Paul D. Hanna, Jul 16 2011

Keywords

Comments

In Cellarosi and Sinai (2011) on page 257, m_k denotes a(k)/k!. - Michael Somos, Dec 28 2012

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 152*x^4/4! + 1944*x^5/5! + ...
Related expansions:
A(x/(1-x))/(1-x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ...
A(x) + x*A'(x) = 1 + 2*x + 9*x^2/2! + 68*x^3/3! + 760*x^4/4! + ...
Also, a(n) appears in the expansion:
B(x) = 1 + x + 3*x^2/2!^2 + 17*x^3/3!^2 + 152*x^4/4!^2 + 1944*x^5/5!^2 + ...
where
log(B(x)) = x + x^2/(2*2!) + x^3/(3*3!) + x^4/(4*4!) + x^5/(5*5!) + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-i)*binomial(n-1, i-1)/i, i=1..n))
        end:
    a:= n-> b(n)*n!:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 11 2016
  • Mathematica
    a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ Integrate[ (Exp[t] - 1)/t, {t, 0, x}]], {x, 0, n}]]]; (* Michael Somos, Dec 28 2012 *)
    a[ n_] := If[ n<0, 0, n!^2 Assuming[ x>0, SeriesCoefficient[ Exp[ ExpIntegralEi[x] - Log[x] - EulerGamma], {x, 0, n}]]]; (* Michael Somos, Dec 28 2012 *)
    Table[Sum[BellY[n, k, 1/Range[n]], {k, 0, n}] n!, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    {a(n)=local(A=1+x,B);for(i=1,n,B=subst(A,x,x/(1-x+x*O(x^n)))/(1-x);A=1+intformal((B-A)/x));n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=if(n<0,0,if(n==0,1,(n-1)!*sum(k=0,n-1,binomial(n,k)*a(k)/k!)))}
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(sum(m=1,n,x^m/(m*m!))+x*O(x^n)),n)}

Formula

a(n) = (n-1)!* Sum_{k=0..n-1} binomial(n,k)*a(k)/k! for n>0 with a(0)=1.
a(n) = A193160(n+1)/(n+1).
E.g.f.: exp( Sum_{n>=1} x^n/(n*n!) ) = Sum_{n>=0} a(n)*x^n/n!^2.
a(n) = n! * A177208(n) / A177209(n) for n>=1 (see comment from Michael Somos).

A323290 Numerator of the sum of inverse products of cycle sizes in all permutations of [n].

Original entry on oeis.org

1, 1, 3, 19, 107, 641, 51103, 1897879, 7860361, 505249081, 40865339743, 1355547261301, 244350418462637, 34907820791828741, 1949845703291363567, 1136592473036395958917, 31690844708764028510969, 2681369908698254192692979, 768531714669026186032238737
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2019

Keywords

Examples

			1/1, 1/1, 3/2, 19/6, 107/12, 641/20, 51103/360, 1897879/2520, 7860361/1680, 505249081/15120, 40865339743/151200, ... = A323290/A323291
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1)*(j-1)!/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..20);
  • Mathematica
    nmax = 20; Numerator[CoefficientList[Series[Exp[PolyLog[2, x]], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Feb 12 2024 *)

Formula

E.g.f.: exp(polylog(2,x)) (for fractions A323290(n)/A323291(n)). - Vaclav Kotesovec, Feb 12 2024
A323290(n)/A323291(n) ~ exp(Pi^2/6) * n! / n^2. - Vaclav Kotesovec, Feb 14 2024
Showing 1-7 of 7 results.