A022629 Expansion of Product_{m>=1} (1 + m*q^m).
1, 1, 2, 5, 7, 15, 25, 43, 64, 120, 186, 288, 463, 695, 1105, 1728, 2525, 3741, 5775, 8244, 12447, 18302, 26424, 37827, 54729, 78330, 111184, 159538, 225624, 315415, 444708, 618666, 858165, 1199701, 1646076, 2288961, 3150951, 4303995, 5870539, 8032571, 10881794, 14749051, 19992626
Offset: 0
Keywords
Examples
The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding products are 6,5,8,6 and their sum is a(6) = 25.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Vaclav Kotesovec, Graph - The asymptotic ratio (1000000 terms)
Crossrefs
Programs
-
Magma
Coefficients(&*[(1+m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 16 2018
-
Maple
b:= proc(n, i) option remember; local f, g; if n=0 then [1, 1] elif i<1 then [0, 0] else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i-1)); [f[1]+g[1], f[2]+g[2]*i] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=0..60); # Alois P. Heinz, Nov 02 2012 # second Maple program: b:= proc(n, i) option remember; `if`(i*(i+1)/2
n, 0, i*b(n-i, i-1)))) end: a:= n-> b(n$2): seq(a(n), n=0..60); # Alois P. Heinz, Aug 24 2015 -
Mathematica
nn=20;CoefficientList[Series[Product[1+i x^i,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Nov 02 2012 *) nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(j+1)*PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *) (* More efficient program: 10000 terms, 4 minutes, 100000 terms, 6 hours *) nmax = 40; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j+1]] += k*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 06 2016 *)
-
PARI
N=66; q='q+O('q^N); Vec(prod(n=1,N, (1+n*q^n) )) \\ Joerg Arndt, Oct 06 2012
Formula
Conjecture: log(a(n)) ~ sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, May 08 2018
Comments