A323299 Number of 3-uniform hypergraphs on n labeled vertices where every two edges have exactly one vertex in common.
1, 1, 1, 2, 5, 26, 261, 3216, 19617, 80860, 262651, 737716, 1920821, 5013152, 14277485, 47610876, 186355041, 820625616, 3869589607, 19039193980, 96332399701, 499138921736, 2639262062801, 14234781051932, 78188865206145, 437305612997376, 2487692697142251
Offset: 0
Keywords
Examples
The a(5) = 26 hypergraphs: {} {{1,2,3}} {{1,2,4}} {{1,2,5}} {{1,3,4}} {{1,3,5}} {{1,4,5}} {{2,3,4}} {{2,3,5}} {{2,4,5}} {{3,4,5}} {{1,2,3},{1,4,5}} {{1,2,3},{2,4,5}} {{1,2,3},{3,4,5}} {{1,2,4},{1,3,5}} {{1,2,4},{2,3,5}} {{1,2,4},{3,4,5}} {{1,2,5},{1,3,4}} {{1,2,5},{2,3,4}} {{1,2,5},{3,4,5}} {{1,3,4},{2,3,5}} {{1,3,4},{2,4,5}} {{1,3,5},{2,3,4}} {{1,3,5},{2,4,5}} {{1,4,5},{2,3,4}} {{1,4,5},{2,3,5}} The following are non-isomorphic representatives of the 10 unlabeled 3-uniform hypergraphs on 7 vertices where every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 3216. 1 X {} 35 X {{1,2,3}} 315 X {{1,2,5},{3,4,5}} 105 X {{1,2,7},{3,4,7},{5,6,7}} 840 X {{1,3,5},{2,3,6},{4,5,6}} 840 X {{1,4,5},{2,4,6},{3,4,7},{5,6,7}} 210 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}} 630 X {{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}} 210 X {{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}} 30 X {{1,2,7},{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]!=1&]],{n,8}]
Formula
Binomial transform of A323298.
Extensions
Terms a(11) and beyond from Andrew Howroyd, Aug 14 2019