A323339 Numerator of the sum of inverse products of parts in all compositions of n.
1, 1, 3, 7, 11, 347, 3289, 1011, 38371, 136553, 4320019, 12528587, 40771123, 29346499543, 129990006917, 1927874590951, 903657004321, 437445829053473, 12456509813711881, 187206004658210129, 1974369484466728177, 1967745662306280217, 21401375717067880189
Offset: 0
Examples
1/1, 1/1, 3/2, 7/3, 11/3, 347/60, 3289/360, 1011/70, 38371/1680, 136553/3780, 4320019/75600, 12528587/138600, 40771123/285120, ... = A323339/A323340
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..466
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)/j, j=1..n)) end: a:= n-> numer(b(n)): seq(a(n), n=0..25);
-
Mathematica
nmax = 20; Numerator[CoefficientList[Series[1/(1 + Log[1-x]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 12 2024 *)
Formula
G.f. for fractions: 1 / (1 + log(1 - x)). - Ilya Gutkovskiy, Nov 12 2019
a(n) = numerator( A007840(n)/n! ). - Alois P. Heinz, Jan 04 2024
Comments