A323351 Number of ways to fill a (not necessarily square) matrix with n zeros and ones.
1, 2, 8, 16, 48, 64, 256, 256, 1024, 1536, 4096, 4096, 24576, 16384, 65536, 131072, 327680, 262144, 1572864, 1048576, 6291456, 8388608, 16777216, 16777216, 134217728, 100663296, 268435456, 536870912, 1610612736, 1073741824, 8589934592, 4294967296, 25769803776
Offset: 0
Keywords
Examples
The a(3) = 16 matrices: [000] [001] [010] [011] [100] [101] [110] [111] . [0] [0] [0] [0] [1] [1] [1] [1] [0] [0] [1] [1] [0] [0] [1] [1] [0] [1] [0] [1] [0] [1] [0] [1]
Programs
-
Mathematica
Table[2^n*DivisorSigma[0,n],{n,10}]
-
PARI
a(n) = if (n==0, 1, 2^n*numdiv(n)); \\ Michel Marcus, Jan 15 2019
Formula
a(n) = 2^n * A000005(n) for n > 0, a(0) = 1.
G.f.: 1 + Sum_{k>=1} 2^k*x^k/(1 - 2^k*x^k). - Ilya Gutkovskiy, May 23 2019