cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323409 Greatest common divisor of Product (p_i^e_i)-1 and n, when n = Product (p_i^e_i); a(n) = gcd(n, A047994(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 6, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 4, 1, 2, 5, 14, 3, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 3, 2, 1, 6, 1, 20, 1, 2, 1, 12, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Comments

Records 1, 2, 6, 12, 14, 20, 24, 84, 120, 168, 240, 468, 720, 1008, 1240, 1488, 1632, 7440, 9360, 14880, 32640, ... occur at n = 1, 6, 12, 36, 56, 80, 144, 168, 240, 504, 720, 1404, 3600, 4032, 4960, 8928, 13056, 14880, 28080, 44640, 65280, ...

Crossrefs

Programs

  • PARI
    A047994(n) = { my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); };
    A323409(n) = gcd(n, A047994(n));

Formula

a(n) = gcd(n, A047994(n)), where A047994 is unitary phi.