A323416 a(n) = (n-1)! * (10^n - 1) / 9.
1, 11, 222, 6666, 266664, 13333320, 799999920, 55999999440, 4479999995520, 403199999959680, 40319999999596800, 4435199999995564800, 532223999999946777600, 69189119999999308108800, 9686476799999990313523200, 1452971519999999854702848000, 232475443199999997675245568000, 39520825343999999960479174656000
Offset: 1
Examples
Example for n = 3: Take the number 569. Sum the permutations of its digits: 569 + 596 + 659 + 695 + 956 + 965 = 4440. Add all its digits: 5 + 6 + 9 = 20. Divide: 4440 / 20 = 222. General proof for n = 3: Number: abc where a,b,c are distinct. The sum of the permutations is 200*(a+b+c) + 20*(a+b+c) + 2*(a+b+c) = 222*(a+b+c), so a(3) = 222.
Links
- David Cobac, Table of n, a(n) for n = 1..325
- G. Villemin, Nombres permutés
Programs
-
Mathematica
Table[(n-1)! (10^n-1)/9,{n,20}] (* Harvey P. Dale, Mar 15 2024 *)
-
PARI
a(n) = (10^n - 1) / 9 * (n-1)! \\ David A. Corneth, Jan 13 2019
-
Python
f = lambda n:+(n==0) or n*f(n-1) def seq(n): if n==0: return l = [] for i in range(1, n + 1): # following line with a string repeat # s = int('1'*i) s = 0 for j in range(i): s += 10 ** j l += [s*f(i-1)] return l
Formula
Recurrence relation: a(n+1) = n! * 10^n + n * a(n).
Proof: Assume R_n is a string of n 1's (repunit),
a(n) = (n-1)! * R_n so a(n+1) = n! * R_{n+1} = n! * (10^n + R_n);
Thus a(n+1) = n! * 10^n + n! * R_n = n! * 10^n + n * (n-1)! * R_n;
Hence a(n+1) = n! * 10^n + n * a(n).
Extensions
Edited by N. J. A. Sloane, Jan 19 2019
Comments