cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323416 a(n) = (n-1)! * (10^n - 1) / 9.

Original entry on oeis.org

1, 11, 222, 6666, 266664, 13333320, 799999920, 55999999440, 4479999995520, 403199999959680, 40319999999596800, 4435199999995564800, 532223999999946777600, 69189119999999308108800, 9686476799999990313523200, 1452971519999999854702848000, 232475443199999997675245568000, 39520825343999999960479174656000
Offset: 1

Views

Author

David Cobac, Jan 13 2019

Keywords

Comments

Take an n-digit number with distinct digits, add all permutations of the digits, divide by the sum of the digits: the result is a(n).
Proof from David A. Corneth, Jan 14 2019: (Start)
Let m be an n-digit number (without leading 0, where n > 0). Then n! permutations of digits can be formed.
So each digit occurs n!/n = (n-1)! times in each position. Therefore the total sum is (10^n - 1) * (n - 1)! * s where s is the sum of digits of n. Dividing this product by s gives a(n) = (10^n - 1) * (n - 1)!. QED (End)

Examples

			Example for n = 3:
Take the number 569.
Sum the permutations of its digits: 569 + 596 + 659 + 695 + 956 + 965 = 4440.
Add all its digits: 5 + 6 + 9 = 20.
Divide: 4440 / 20 = 222.
General proof for n = 3:
Number: abc where a,b,c are distinct.
The sum of the permutations is 200*(a+b+c) + 20*(a+b+c) + 2*(a+b+c) = 222*(a+b+c), so a(3) = 222.
		

Crossrefs

Cf. A000142, A002275, A071267. Sum of digits A110728.

Programs

  • Mathematica
    Table[(n-1)! (10^n-1)/9,{n,20}] (* Harvey P. Dale, Mar 15 2024 *)
  • PARI
    a(n) = (10^n - 1) / 9 * (n-1)! \\ David A. Corneth, Jan 13 2019
  • Python
    f = lambda n:+(n==0) or n*f(n-1)
    def seq(n):
       if n==0: return
       l = []
       for i in range(1, n + 1):
           # following line with a string repeat
           # s = int('1'*i)
           s = 0
           for j in range(i):
               s += 10 ** j
           l += [s*f(i-1)]
       return l
    

Formula

Recurrence relation: a(n+1) = n! * 10^n + n * a(n).
Proof: Assume R_n is a string of n 1's (repunit),
a(n) = (n-1)! * R_n so a(n+1) = n! * R_{n+1} = n! * (10^n + R_n);
Thus a(n+1) = n! * 10^n + n! * R_n = n! * 10^n + n * (n-1)! * R_n;
Hence a(n+1) = n! * 10^n + n * a(n).

Extensions

Edited by N. J. A. Sloane, Jan 19 2019