cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323427 Primes p such that the concatenation of p^2, p and 1 is prime.

Original entry on oeis.org

2, 5, 17, 41, 89, 173, 191, 197, 293, 311, 353, 479, 491, 647, 797, 857, 887, 911, 971, 1097, 1181, 1319, 1523, 1847, 2003, 2069, 2153, 2351, 2411, 2459, 2549, 2693, 2699, 2729, 2837, 2843, 2957, 2963, 3011, 3041, 3089, 3359, 3407, 3533, 3557, 3581, 3761, 3767, 3797, 4133, 4289, 4547, 4787, 4937
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 14 2019

Keywords

Comments

All terms == 2 (mod 3).

Examples

			a(3)=17 is a term because 17 and 289171 are primes, where 17^2=289.
		

Crossrefs

Cf. A323428.

Programs

  • Maple
    cat3:= proc(x) local t;
      t:= 10*x+1;
      x^2*10^(1+ilog10(t))+t
    end proc:
    select(t -> isprime(t) and isprime(cat3(t)), [2,seq(i,i=5..10000,6)]);
  • Mathematica
    ppQ[n_]:=PrimeQ[FromDigits[IntegerDigits/@Join[n^2, n, 1]]]; Select[Prime[Range[500]], ppQ] (* Vincenzo Librandi, Jan 15 2019 *)
    Select[Prime[Range[700]],PrimeQ[FromDigits[Join[IntegerDigits[#^2],IntegerDigits[#],{1}]]]&] (* Harvey P. Dale, Aug 07 2025 *)