cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323428 Primes p such that the concatenation of p^3, p^2, p and 1 is prime.

Original entry on oeis.org

37, 79, 967, 3181, 3463, 3607, 3643, 3691, 3931, 4657, 5227, 5419, 5569, 5953, 6217, 6379, 6529, 7417, 7603, 7753, 7759, 8527, 8887, 9049, 9277, 9343, 9679, 9829, 9871, 31723, 32323, 32983, 33151, 33601, 34039, 35227, 36529, 36913, 37189, 38329, 38707, 38749, 39097, 40123, 41149, 41479, 42073
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 14 2019

Keywords

Comments

All terms == 1 (mod 6).

Examples

			a(3)=967 is a term because 967 is prime and 9042310639350899671 is prime, where 967^3=904231063 and 967^2=935089.
		

Crossrefs

Cf. A323427.

Programs

  • Maple
    cat4:= proc(x) local t;
      t:= 10*x+1;
      t:= x^2*10^(1+ilog10(t))+t;
      x^3*10^(1+ilog10(t))+t;
    end proc:
    select(t -> isprime(t) and isprime(cat4(t)), [seq(i,i=1..10^5,6)]);
  • Mathematica
    pppQ[n_]:=PrimeQ[FromDigits[IntegerDigits/@Join[n^3, n^2, n, 1]]]; Select[Prime[Range[4500]], pppQ] (* Vincenzo Librandi, Jan 15 2019 *)