A323433 Number of ways to split an integer partition of n into consecutive subsequences of equal length.
1, 1, 3, 5, 10, 14, 25, 34, 54, 74, 109, 146, 211, 276, 381, 501, 675, 871, 1156, 1477, 1926, 2447, 3142, 3957, 5038, 6291, 7918, 9839, 12277, 15148, 18773, 23027, 28333, 34587, 42284, 51357, 62466, 75503, 91344, 109971, 132421, 158755, 190365, 227354, 271511
Offset: 0
Keywords
Examples
The a(5) = 14 split partitions: [5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1] . [4] [3] [2 1] [1] [2] [1 1] . [3] [2] [1] [2] [1] [1] . [2] [1] [1] [1] . [1] [1] [1] [1] [1]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0 or i=1, numtheory [tau](t+n), b(n, i-1, t)+b(n-i, min(n-i, i), t+1)) end: a:= n-> `if`(n=0, 1, b(n$2, 0)): seq(a(n), n=0..50); # Alois P. Heinz, Jan 15 2019
-
Mathematica
Table[Sum[Length[Divisors[Length[ptn]]],{ptn,IntegerPartitions[n]}],{n,30}] (* Second program: *) b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1, DivisorSigma[0, t+n], b[n, i-1, t] + b[n-i, Min[n-i, i], t+1]]; a[n_] := If[n == 0, 1, b[n, n, 0]]; a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
-
PARI
my(N=66, x='x+O('x^N)); Vec(1+sum(k=1, N, numdiv(k)*x^k/prod(j=1, k, 1-x^j))) \\ Seiichi Manyama, Jan 21 2022
-
PARI
my(N=66, x='x+O('x^N)); Vec(1+sum(i=1, N, sum(j=1, N\i, x^(i*j)/prod(k=1, i*j, 1-x^k)))) \\ Seiichi Manyama, Jan 21 2022
Formula
a(n) = Sum_y A000005(k), where the sum is over all integer partitions of n and k is the number of parts.
From Seiichi Manyama, Jan 21 2022: (Start)
G.f.: 1 + Sum_{k>=1} A000005(k) * x^k/Product_{j=1..k} (1-x^j).
G.f.: 1 + Sum_{i>=1} Sum_{j>=1} x^(i*j)/Product_{k=1..i*j} (1-x^k). (End)
a(n) = Sum_{i=1..n} Sum_{j=1..n} A008284(n,i*j). - Ridouane Oudra, Apr 13 2023