cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323433 Number of ways to split an integer partition of n into consecutive subsequences of equal length.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 25, 34, 54, 74, 109, 146, 211, 276, 381, 501, 675, 871, 1156, 1477, 1926, 2447, 3142, 3957, 5038, 6291, 7918, 9839, 12277, 15148, 18773, 23027, 28333, 34587, 42284, 51357, 62466, 75503, 91344, 109971, 132421, 158755, 190365, 227354, 271511
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Examples

			The a(5) = 14 split partitions:
  [5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1]
.
  [4] [3] [2 1]
  [1] [2] [1 1]
.
  [3] [2]
  [1] [2]
  [1] [1]
.
  [2]
  [1]
  [1]
  [1]
.
  [1]
  [1]
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0 or i=1, numtheory
          [tau](t+n), b(n, i-1, t)+b(n-i, min(n-i, i), t+1))
        end:
    a:= n-> `if`(n=0, 1, b(n$2, 0)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 15 2019
  • Mathematica
    Table[Sum[Length[Divisors[Length[ptn]]],{ptn,IntegerPartitions[n]}],{n,30}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1,
         DivisorSigma[0, t+n], b[n, i-1, t] + b[n-i, Min[n-i, i], t+1]];
    a[n_] := If[n == 0, 1, b[n, n, 0]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
  • PARI
    my(N=66, x='x+O('x^N)); Vec(1+sum(k=1, N, numdiv(k)*x^k/prod(j=1, k, 1-x^j))) \\ Seiichi Manyama, Jan 21 2022
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(1+sum(i=1, N, sum(j=1, N\i, x^(i*j)/prod(k=1, i*j, 1-x^k)))) \\ Seiichi Manyama, Jan 21 2022

Formula

a(n) = Sum_y A000005(k), where the sum is over all integer partitions of n and k is the number of parts.
From Seiichi Manyama, Jan 21 2022: (Start)
G.f.: 1 + Sum_{k>=1} A000005(k) * x^k/Product_{j=1..k} (1-x^j).
G.f.: 1 + Sum_{i>=1} Sum_{j>=1} x^(i*j)/Product_{k=1..i*j} (1-x^k). (End)
a(n) = Sum_{i=1..n} Sum_{j=1..n} A008284(n,i*j). - Ridouane Oudra, Apr 13 2023