A323450 Number of ways to fill a Young diagram with positive integers summing to n such that all rows and columns are weakly increasing.
1, 1, 3, 6, 14, 26, 56, 103, 203, 374, 702, 1262, 2306, 4078, 7242, 12628, 21988, 37756, 64682, 109606, 185082, 309958, 516932, 856221, 1412461, 2316416, 3783552
Offset: 0
Examples
The a(4) = 14 generalized Young tableaux: 4 1 3 2 2 1 1 2 1 1 1 1 . 1 2 1 1 1 2 1 1 1 1 1 3 2 2 1 1 1 1 . 1 1 1 1 1 2 1 . 1 1 1 1 The a(5) = 26 generalized Young tableaux: 5 1 4 2 3 1 1 3 1 2 2 1 1 1 2 1 1 1 1 1 . 1 2 1 1 1 3 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 4 3 3 1 2 1 2 2 1 1 1 1 . 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 3 2 2 1 1 1 . 1 1 1 1 1 1 1 2 1 . 1 1 1 1 1
Links
- nLab, Young Diagram.
- The Unapologetic Mathematician weblog, Generalized Young Tableaux.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@facs[n],{2}]]; Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])&]],{y,IntegerPartitions[n]}],{n,10}]
Extensions
a(16)-a(26) from Seiichi Manyama, Aug 19 2020
Comments