A323528 Numbers whose sum of prime indices is a perfect square.
1, 2, 7, 9, 10, 12, 16, 23, 38, 51, 53, 65, 68, 77, 78, 94, 97, 98, 99, 104, 105, 110, 125, 126, 129, 132, 135, 140, 150, 151, 162, 168, 172, 176, 178, 180, 200, 205, 216, 224, 227, 240, 246, 249, 259, 288, 298, 311, 320, 328, 332, 333, 341, 361, 370, 377, 384
Offset: 1
Keywords
Examples
10 is in the sequence because 10 = 2*5 = prime(1)*prime(3) and 1 + 3 = 4 is a square.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
select(k-> issqr(add(numtheory[pi](i[1])*i[2], i=ifactors(k)[2])), [$1..400])[]; # Alois P. Heinz, Jan 22 2019
-
Mathematica
Select[Range[100],IntegerQ[Sqrt[Sum[PrimePi[f[[1]]]*f[[2]],{f,FactorInteger[#]}]]]&]
-
PARI
isok(n) = {my(f=factor(n)); issquare(sum(k=1, #f~, primepi(f[k, 1])*f[k,2]));} \\ Michel Marcus, Jan 18 2019
Comments