cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323560 Number of self-avoiding knight's paths trapped after n moves on an infinite chessboard with first move specified.

Original entry on oeis.org

1728, 10368, 332660, 1952452
Offset: 15

Views

Author

Hugo Pfoertner, Jan 18 2019

Keywords

Comments

The average number of moves of a self-avoiding random walk of a knight on an infinite chessboard to self-trapping is 3210. The corresponding number of moves for paths with forbidden crossing (A323131) is 45.
a(n)=0 for n<15.

Examples

			There are two (of a(15)=1728) paths of 15 moves of minimum extension 5 X 5:
  (N) b1 d2 e4 c5 a4 b2 d1 e3 d5 b4 a2 c1 e2 d4 b5 c3, and
  (N) a4 c5 e4 d2 b1 a3 b5 d4 e2 c1 a2 b4 d5 e3 d1 c3.
		

Crossrefs