A323605 Smallest prime divisor of A000058(n) = A007018(n) + 1 (Sylvester's sequence).
2, 3, 7, 43, 13, 3263443, 547, 29881, 5295435634831, 181, 2287, 73
Offset: 0
Links
- Filip Saidak, A new proof of Euclid's theorem, Amer. Math. Monthly, 113:10 (2006) 937-938.
- Wikipedia, Sylvester's sequence: Divisibility and factorizations.
Programs
-
Maple
with(numtheory): u:=1: P:=NULL: to 9 do P:=P,sort([op(divisors(u+1))])[2]: u:=u*(u+1) od: P;
-
PARI
f(n)=if(n<1, n>=0, f(n-1)+f(n-1)^2); \\ A007018 a(n)=divisors(f(n)+1)[2]; \\ Michel Marcus, Jan 20 2019
Formula
a(n) = A007996(m), where m is the smallest index such that A180871(m) = n. - Max Alekseyev, Oct 11 2023
Extensions
a(10)-a(11) from Daniel Suteu, Jan 20 2019
Comments