A323611 Prime numbers generated by the formula a(n) = round(c(n)), where c(n) = c(n-1)^(3/2) for n >= 2 starting with c(1) = C and C the real constant given below.
2, 3, 5, 11, 37, 223, 3331, 192271, 84308429, 774116799347, 681098209317971743, 562101323304225290104514179, 13326678220145859782825116625722145759009, 1538448162271607869601834587431948506238982765193425993274489
Offset: 1
Keywords
Examples
c(1) = 2.038239154782068, c(2) = 2.9099311279, c(3) = 4.96391190457, c(4) = 11.05951540, ... so a(1) = {c(1)} = 2, a(2) = {c(2)} = 3, a(3) = {c(3)} = 5, ... c(n) = c(n-1)^(3/2) and a(n) = {c(n)} is the value rounded to the nearest integer.
Links
- Simon Plouffe, A set of formulas for primes, arXiv:1901.01849 [math.NT], 2019.
Programs
-
Maple
# Computes the values according to the formula, c = 2.03823915478..., e = 3/2, m the number of terms. Returns the real and the rounded values (primes). val := proc(c, e, m) local ll, v, n; v := c; ll := [v]; for n to m-1 do v := v^e; ll := [op(ll), v] end do; return [ll, map(round, ll)] end:
Comments