cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323631 Stirling transform of Pell numbers (A000129).

Original entry on oeis.org

0, 1, 3, 12, 57, 305, 1798, 11531, 79707, 589426, 4634471, 38547861, 337734048, 3105588629, 29877483743, 299906019892, 3133423928557, 34002824654365, 382507638525838, 4452923233600903, 53561431659306039, 664728428775177890, 8500763141347126563, 111886109022440334593, 1513989730079050155936
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 21 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0,
          (<<2|1>, <1|0>>^m)[1, 2], m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..24);  # Alois P. Heinz, Jun 23 2023
  • Mathematica
    FullSimplify[nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] Sinh[Sqrt[2] (Exp[x] - 1)]/Sqrt[2], {x, 0, nmax}], x] Range[0, nmax]!]
    Table[Sum[StirlingS2[n, k] Fibonacci[k, 2], {k, 0, n}], {n, 0, 24}]
    Table[Sum[Binomial[n, k] BellB[n - k] (BellB[k, Sqrt[2]] - BellB[k, -Sqrt[2]])/(2 Sqrt[2]), {k, 0, n}], {n, 0, 24}]

Formula

E.g.f.: exp(exp(x) - 1)*sinh(sqrt(2)*(exp(x) - 1))/sqrt(2).
a(n) = Sum_{k=0..n} Stirling2(n,k)*A000129(k).
a(n) = Sum_{k=0..n} binomial(n,k)*A000110(n-k)*A264037(k).