A323631 Stirling transform of Pell numbers (A000129).
0, 1, 3, 12, 57, 305, 1798, 11531, 79707, 589426, 4634471, 38547861, 337734048, 3105588629, 29877483743, 299906019892, 3133423928557, 34002824654365, 382507638525838, 4452923233600903, 53561431659306039, 664728428775177890, 8500763141347126563, 111886109022440334593, 1513989730079050155936
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..553
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, (<<2|1>, <1|0>>^m)[1, 2], m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..24); # Alois P. Heinz, Jun 23 2023
-
Mathematica
FullSimplify[nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] Sinh[Sqrt[2] (Exp[x] - 1)]/Sqrt[2], {x, 0, nmax}], x] Range[0, nmax]!] Table[Sum[StirlingS2[n, k] Fibonacci[k, 2], {k, 0, n}], {n, 0, 24}] Table[Sum[Binomial[n, k] BellB[n - k] (BellB[k, Sqrt[2]] - BellB[k, -Sqrt[2]])/(2 Sqrt[2]), {k, 0, n}], {n, 0, 24}]