A323632 Stirling transform of Jacobsthal numbers (A001045).
0, 1, 2, 7, 31, 152, 813, 4741, 29956, 203305, 1470795, 11276718, 91221419, 775677177, 6910797962, 64326920851, 623981351195, 6293426736344, 65867162316433, 714062197266081, 8005397253530924, 92676194887133693, 1106385117766336919, 13603803900252612966, 172082332173918135687
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..558
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, round(2^m/3), m*b(n-1, m)+b(n-1, m+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..24); # Alois P. Heinz, Aug 06 2021
-
Mathematica
nmax = 24; CoefficientList[Series[(Exp[2 (Exp[x] - 1)] - Exp[1 - Exp[x]])/3, {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[StirlingS2[n, k] (2^k - (-1)^k)/3, {k, 0, n}], {n, 0, 24}] Table[(BellB[n, 2] - BellB[n, -1])/3, {n, 0, 24}]