A323654 Number of non-isomorphic multiset partitions of weight n with no constant parts and only two distinct vertices.
1, 0, 1, 1, 3, 3, 8, 9, 20, 26, 50, 69, 125, 177, 301, 440, 717, 1055, 1675, 2471, 3835, 5660, 8627, 12697, 19095, 27978, 41581, 60650, 89244, 129490, 188925, 272676, 394809, 566882, 815191, 1164510, 1664295, 2365698, 3361844, 4756030, 6723280, 9468138, 13319299
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 1 through a(7) = 9 multiset partitions: {{12}} {{122}} {{1122}} {{11222}} {{111222}} {{1112222}} {{1222}} {{12222}} {{112222}} {{1122222}} {{12}{12}} {{12}{122}} {{122222}} {{1222222}} {{112}{122}} {{112}{1222}} {{12}{1122}} {{12}{11222}} {{12}{1222}} {{12}{12222}} {{122}{122}} {{122}{1122}} {{12}{12}{12}} {{122}{1222}} {{12}{12}{122}} Inequivalent representatives of the a(8) = 20 matrices: [4 4] [3 5] [2 6] [1 7] . [1 1] [1 1] [1 1] [2 1] [2 1] [1 2] [1 2] [3 1] [2 2] [2 2] [1 3] [3 3] [2 4] [1 5] [2 3] [1 4] [2 3] [1 4] [1 3] [2 2] [1 3] [1 3] . [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [2 1] [1 2] [2 2] [1 3] [1 2] [1 2] . [1 1] [1 1] [1 1] [1 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={concat(1,(EulerT(vector(n, k, k-1)) + EulerT(vector(n, k, if(k%2, 0, (k+2)\4))))/2)} \\ Andrew Howroyd, Aug 26 2019
Formula
Extensions
Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019
Comments