A323656 Number of non-isomorphic multiset partitions of weight n with exactly 2 distinct vertices, or with exactly 2 (not necessarily distinct) edges.
0, 0, 2, 4, 14, 28, 69, 134, 285, 536, 1050, 1918, 3566, 6346, 11363, 19771, 34405, 58677, 99797, 167223, 279032, 460264, 755560, 1228849, 1988680, 3193513, 5103104, 8100712, 12798207, 20102883, 31434374, 48900337, 75746745, 116787611, 179342230, 274238159
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 2 through a(4) = 14 multiset partitions with exactly 2 distinct vertices: {{12}} {{122}} {{1122}} {{1}{2}} {{1}{22}} {{1222}} {{2}{12}} {{1}{122}} {{1}{2}{2}} {{11}{22}} {{12}{12}} {{1}{222}} {{12}{22}} {{2}{122}} {{1}{1}{22}} {{1}{2}{12}} {{1}{2}{22}} {{2}{2}{12}} {{1}{1}{2}{2}} {{1}{2}{2}{2}} Non-isomorphic representatives of the a(2) = 2 through a(4) = 14 multiset partitions with exactly 2 edges: {{1}{1}} {{1}{11}} {{1}{111}} {{1}{2}} {{1}{22}} {{11}{11}} {{1}{23}} {{1}{122}} {{2}{12}} {{11}{22}} {{12}{12}} {{1}{222}} {{12}{22}} {{1}{233}} {{12}{33}} {{1}{234}} {{12}{34}} {{13}{23}} {{2}{122}} {{3}{123}} Inequivalent representatives of the a(4) = 14 matrices: [2 2] [1 3] . [1 0] [1 0] [0 1] [2 0] [1 1] [1 1] [1 2] [0 3] [1 2] [0 2] [1 1] [0 2] . [1 0] [1 0] [1 0] [0 1] [1 0] [0 1] [0 1] [0 1] [0 2] [1 1] [0 2] [1 1] . [1 0] [1 0] [1 0] [0 1] [0 1] [0 1] [0 1] [0 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={concat(0, (EulerT(vector(n, k, k+1)) + EulerT(vector(n, k, if(k%2, 0, (k+6)\4))))/2 - EulerT(vector(n,k,1)))} \\ Andrew Howroyd, Aug 26 2019
Formula
Extensions
Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019
Comments