cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323704 Number of cubic residues (including 0) modulo the n-th prime.

Original entry on oeis.org

2, 3, 5, 3, 11, 5, 17, 7, 23, 29, 11, 13, 41, 15, 47, 53, 59, 21, 23, 71, 25, 27, 83, 89, 33, 101, 35, 107, 37, 113, 43, 131, 137, 47, 149, 51, 53, 55, 167, 173, 179, 61, 191, 65, 197, 67, 71, 75, 227, 77, 233, 239, 81, 251, 257, 263, 269, 91, 93, 281, 95, 293
Offset: 1

Views

Author

Florian Severin, Jan 24 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[With[{p=Prime[n]},If[Mod[p,3]==1,1+(p-1)/3,p]],{n,80}] (* Harvey P. Dale, Feb 02 2025 *)
  • PARI
    a(n) = my(p=prime(n)); sum(k=0, p-1, ispower(Mod(k,p), 3)); \\ Michel Marcus, Feb 26 2019
  • Python
    from sympy import prime
    def a(n):
      p = prime(n)
      return len(set([x**3 % p for x in range(p)]))
    

Formula

If prime(n) - 1 = 3k then a(n) = k+1, otherwise a(n) = prime(n). (Cf. formula for A236959.)
a(n) = A236959(n) + 1.
a(n) = A046530(A000040(n)). - Rémy Sigrist, Jan 24 2019