cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323715 a(n) = Product_{k=0..n} (2^k + 3^k).

Original entry on oeis.org

2, 10, 130, 4550, 441350, 121371250, 96247401250, 222812733893750, 1518914406953693750, 30674476448429845281250, 1842707823686526095580531250, 330204028465507043697553297343750, 176836474792332245660656600199579843750
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 25 2019

Keywords

Crossrefs

Programs

  • Magma
    [(&*[3^j+2^j: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 30 2023
    
  • Mathematica
    Table[Product[2^k+3^k, {k, 0, n}], {n, 0, 12}]
    Table[2^(n*(n+1)/2)*QPochhammer[-1, 3/2, n+1], {n, 0, 12}]
  • PARI
    a(n) = prod(k=0, n, 2^k+3^k); \\ Michel Marcus, Jan 25 2019
    
  • SageMath
    [product(3^j+2^j for j in range(n+1)) for n in range(21)] # G. C. Greubel, Aug 30 2023

Formula

a(n) ~ c * 3^(n*(n+1)/2), where c = QPochhammer[-1, 2/3] = 10.934481779448897533...