A323718 Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 6, 4, 1, 1, 1, 7, 15, 10, 5, 1, 1, 1, 11, 28, 34, 15, 6, 1, 1, 1, 15, 66, 80, 65, 21, 7, 1, 1, 1, 22, 122, 254, 185, 111, 28, 8, 1, 1, 1, 30, 266, 604, 739, 371, 175, 36, 9, 1, 1, 1, 42, 503, 1785, 2163, 1785, 672, 260, 45, 10, 1, 1
Offset: 0
Examples
Array begins: k=0: k=1: k=2: k=3: k=4: k=5: n=0: 1 1 1 1 1 1 n=1: 1 1 1 1 1 1 n=2: 1 2 3 4 5 6 n=3: 1 3 6 10 15 21 n=4: 1 5 15 34 65 111 n=5: 1 7 28 80 185 371 n=6: 1 11 66 254 739 1785 n=7: 1 15 122 604 2163 6223 n=8: 1 22 266 1785 8120 28413 n=9: 1 30 503 4370 24446 101534 The A(4,2) = 15 twice-partitions: (4) (31) (22) (211) (1111) (3)(1) (2)(2) (11)(2) (11)(11) (2)(11) (111)(1) (21)(1) (11)(1)(1) (2)(1)(1) (1)(1)(1)(1)
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1, 1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k)) end: A:= (n, k)-> b(n$2, k): seq(seq(A(d-k, k), k=0..d), d=0..14); # Alois P. Heinz, Jan 25 2019
-
Mathematica
ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]]; Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}] (* Second program: *) b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1, b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]]; A[n_, k_] := b[n, n, k]; Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)
Formula
Column k is the formal power product transform of column k-1, where the formal power product transform of a sequence q with offset 1 is the sequence whose ordinary generating function is Product_{n >= 1} 1/(1 - q(n) * x^n).
A(n,k) = Sum_{i=0..k} binomial(k,i) * A327639(n,i). - Alois P. Heinz, Sep 20 2019
Comments