cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323723 a(n) = (-2 - (-1)^n*(-2 + n) + n + 2*n^3)/4.

Original entry on oeis.org

0, 0, 4, 14, 32, 64, 108, 174, 256, 368, 500, 670, 864, 1104, 1372, 1694, 2048, 2464, 2916, 3438, 4000, 4640, 5324, 6094, 6912, 7824, 8788, 9854, 10976, 12208, 13500, 14910, 16384, 17984, 19652, 21454, 23328, 25344, 27436, 29678, 32000, 34480, 37044, 39774
Offset: 0

Views

Author

Stefano Spezia, Jan 25 2019

Keywords

Comments

For n > 1, a(n) is the subdiagonal sum of the matrix M(n) whose permanent is A322277(n).
All the terms of this sequence are even numbers (A005843).

Crossrefs

Programs

  • GAP
    Flat(List([0..50], n -> (-2-(-1)^n*(-2+n)+n+2*n^3)/4));
    
  • Magma
    [(-2-(-1)^n*(-2+n)+n+2*n^3)/4: n in [0..50]];
    
  • Maple
    a:=n->(-2 - (-1)^n*(-2 + n) + n + 2*n^3)/4: seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=(6 + n + n^3 + 12 Floor[1/2 (-3 + n)] + 4 Floor[1/2 (-3 + n)]^2 - 2 (1 + n) Floor[1/2 (-1 + n)])/2; Array[a,50,0]
  • Maxima
    makelist((-2-(-1)^n*(-2+n)+n+2*n^3)/4, n, 0, 50);
    
  • PARI
    a(n) = (-2-(-1)^n*(-2+n)+n+2*n^3)/4;
    
  • Python
    [(-2-(-1)**n*(-2+n)+n+2*n**3)/4 for n in range(50)]

Formula

O.g.f.: 2*x^2*(2 + 3*x + x^3)/((1 - x)^4*(1 + x)^2).
E.g.f.: (1/4)*exp(-x)*(2 + x)*(1 + exp(2*x)*(-1 + 2*x + 2* x^2)).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 5.
a(n) = (6 + n + n^3 + 12*floor((n - 3)/2) + 4*floor((n - 3)/2)^2 - 2*(1 + n)*floor((n - 1)/2))/2.
a(n) = (-2 - A033999(n)*(-2 + n) + n + A033431(n))/4.
a(n) = n^3/2 for even n; a(n) = (n - 1)*(n^2 + n + 2)/2 otherwise. - Bruno Berselli, Feb 06 2019
a(n) = 2*A004526(n*A000982(n)). [Found by Christian Krause's LODA miner] - Stefano Spezia, Dec 12 2021