cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A323588 a(n) = Product_{k=1..n} (k^n + (n-k)^n).

Original entry on oeis.org

1, 1, 8, 2187, 55083008, 248292236328125, 287440081598682287308800, 136294854579772162759923622710449623, 32534104705262209051040075603284216686012438413312, 5686543339012978225006873713961872387810223003912610672810622880089
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2019

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [(&*[k^n +(n-k)^n: k in [1..n]]): n in [1..10]]; // G. C. Greubel, Feb 08 2019
    
  • Mathematica
    Table[Product[k^n+(n-k)^n, {k, 1, n}], {n, 0, 10}]
  • PARI
    vector(10, n, n--; prod(k=1,n, k^n+(n-k)^n)) \\ G. C. Greubel, Feb 08 2019
    
  • Sage
    [product(k^n +(n-k)^n for k in (1..n)) for n in (0..10)] # G. C. Greubel, Feb 08 2019

Formula

a(n) ~ c * 2^(n^2) * n^(n^2) / exp(n^2), where
c = 1.7567468186007109703792640049745420817202851050652253469714... if n is even,
c = 1.8080216158688347442204158454365469233524049331246880759722... if n is odd.
Showing 1-1 of 1 results.