A323760 Numerator of Product_{d|n} (pod(d)/tau(d)) where pod(k) = the product of the divisors of k and tau(k) = the number of the divisors of k.
1, 1, 3, 8, 5, 27, 7, 128, 27, 125, 11, 10368, 13, 343, 3375, 131072, 17, 118098, 19, 2000000, 9261, 1331, 23, 6879707136, 625, 2197, 19683, 15059072, 29, 38443359375, 31, 2147483648, 35937, 4913, 42875, 101559956668416, 37, 6859, 59319, 10240000000000, 41
Offset: 1
Examples
For n=4; Product_{d|4} (pod(d)/tau(d)) = (pod(1)/tau(1))*(pod(2)/tau(2))*(pod(4)/tau(4)) = (1/1)*(2/2)*(8/3) = 8/3; a(4) = 8.
Programs
-
Magma
[Numerator(&*[&*[c: c in Divisors(d)] / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]
-
Maple
A323760 := proc(n) numer(A266265(n)/A211776(n)) ; end proc: seq(A323760(n),n=1..20) ; # R. J. Mathar, Feb 13 2019
-
PARI
a(n) = my(p=1, vd); fordiv(n, d, vd = divisors(d); p *= vecprod(vd)/#vd); numerator(p); \\ Michel Marcus, Jan 27 2019
Formula
a(p) = p for primes p > 2.
Comments