cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A323761 Denominator of Product_{d|n} (pod(d)/tau(d)) where pod(k) = the product of the divisors of k and tau(k) = the number of the divisors of k.

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 16, 15, 2, 1, 2, 9, 16, 2, 2, 1, 6, 2, 8, 9, 2, 8, 2, 45, 16, 2, 16, 1, 2, 2, 16, 9, 2, 8, 2, 9, 32, 2, 2, 25, 6, 9, 16, 9, 2, 1, 16, 9, 16, 2, 2, 1, 2, 2, 32, 315, 16, 8, 2, 9, 16, 8, 2, 1, 2, 2, 32, 9, 16, 8, 2, 9
Offset: 1

Views

Author

Jaroslav Krizek, Jan 27 2019

Keywords

Comments

Product_{d|n} (pod(d)/tau(d)) > 1 for all n > 2.

Examples

			For n=4; Product_{d|4} (pod(d)/tau(d)) = (pod(1)/tau(1))*(pod(2)/tau(2))*(pod(4)/tau(4)) = (1/1)*(2/2)*(8/3) = 8/3; a(4) = 3.
		

Crossrefs

Cf. A211776, A266265, A323760 (numerator), A323762.

Programs

  • Magma
    [Denominator(&*[&*[c: c in Divisors(d)] / NumberOfDivisors(d): d in Divisors(n)]): n in [1..100]]
    
  • Maple
    A323761 := proc(n)
        denom(A266265(n)/A211776(n)) ;
    end proc:
    seq(A323761(n),n=1..20) ; # R. J. Mathar, Feb 13 2019
  • PARI
    a(n) = my(p=1, vd); fordiv(n, d, vd = divisors(d); p *= vecprod(vd)/#vd); denominator(p); \\ Michel Marcus, Jan 27 2019

Formula

a(p) = 2 for prime p > 2.
a(n) = 1 for numbers in A323762.
Showing 1-1 of 1 results.