A323766 Dirichlet convolution of the integer partition numbers A000041 with the number of divisors function A000005.
1, 1, 4, 5, 12, 9, 25, 17, 42, 39, 64, 58, 132, 103, 173, 200, 303, 299, 491, 492, 756, 832, 1122, 1257, 1858, 1975, 2646, 3083, 4057, 4567, 6118, 6844, 8913, 10265, 12912, 14931, 19089, 21639, 27003, 31397, 38830, 44585, 55138, 63263, 77371, 89585, 108076
Offset: 0
Keywords
Examples
The a(6) = 25 constant multiset partitions of constant multiset partitions of integer partitions of 6: ((6)) ((52)) ((42)) ((33)) ((3)(3)) ((3))((3)) ((411)) ((321)) ((222)) ((2)(2)(2)) ((2))((2))((2)) ((3111)) ((2211)) ((21)(21)) ((21))((21)) ((21111)) ((111111)) ((111)(111)) ((11)(11)(11)) ((111))((111)) ((11))((11))((11)) ((1)(1)(1)(1)(1)(1)) ((1)(1)(1))((1)(1)(1)) ((1)(1))((1)(1))((1)(1)) ((1))((1))((1))((1))((1))((1))
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Table[If[n==0,1,Sum[PartitionsP[d]*DivisorSigma[0,n/d],{d,Divisors[n]}]],{n,0,30}]
-
PARI
a(n) = if (n==0, 1, sumdiv(n, d, numbpart(d)*numdiv(n/d))); \\ Michel Marcus, Jan 28 2019
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019
Comments