A323776 a(n) = Sum_{k = 1...n} binomial(k + 2^(n - k) - 1, k - 1).
1, 3, 7, 16, 40, 119, 450, 2253, 15207, 139190, 1731703, 29335875, 677864041, 21400069232, 924419728471, 54716596051100, 4443400439075834, 495676372493566749, 76041424515817042402, 16060385520094706930608, 4674665948889147697184915
Offset: 1
Keywords
Examples
The a(1) = 1 through a(4) = 16 partitions of partitions: (1) (2) (4) (8) (11) (22) (44) (1)(1) (1111) (2222) (2)(2) (4)(4) (2)(11) (4)(22) (11)(11) (22)(22) (1)(1)(1)(1) (4)(1111) (11111111) (22)(1111) (1111)(1111) (2)(2)(2)(2) (2)(2)(2)(11) (2)(2)(11)(11) (2)(11)(11)(11) (11)(11)(11)(11) (1)(1)(1)(1)(1)(1)(1)(1)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..120
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[k+2^(n-k)-1,k-1],{k,n}],{n,20}]
-
PARI
a(n) = sum(k=1, n, binomial(k+2^(n-k)-1, k-1)); \\ Michel Marcus, Jan 28 2019
Comments