cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323781 Numbers m such that Sum_{d|m} (tau(d)/sigma(d)) is an integer h where tau(k) = the number of the divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 15, 429, 609, 6003, 9156, 20943, 75579, 90252, 93849, 115773, 331359, 631764, 744993, 817191, 837655, 925083, 1130766, 1141191, 2349087, 2491740, 2512965, 3040728, 3266253, 3796143, 4314891, 4365231, 5025930, 5294340, 6135624, 6629271, 7210671, 10906175
Offset: 1

Views

Author

Jaroslav Krizek, Feb 16 2019

Keywords

Comments

Sum_{d|n} (tau(d)/sigma(d)) > 1 for all n > 2.
Corresponding values of integers h: 1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 4, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 5, 5, 2, 2, 2, ...
The smallest number m such that Sum_{d|m} (tau(d)/sigma(d)) is an integer h for h >= 1: 1, 15, 2512965, 9156, 631764, ...

Examples

			15 is a term because Sum_{d|15} (tau(d)/sigma(d)) = tau(1)/sigma(1) + tau(3)/sigma(3) + tau(5)/sigma(5) + tau(15)/sigma(15) = 1/1 + 2/4 + 2/6 + 4/24 = 2 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | Denominator(&+[NumberOfDivisors(d) / SumOfDivisors(d): d in Divisors(n)]) eq 1]
    
  • Mathematica
    Select[Range[10^5], IntegerQ@ DivisorSum[#, Divide @@ DivisorSigma[{0, 1}, #] &] &] (* Michael De Vlieger, Feb 17 2019 *)
  • PARI
    isok(n) = !frac(sumdiv(n, d, numdiv(d)/sigma(d))); \\ Michel Marcus, Feb 16 2019

Formula

A323780(a(n)) = 1.