A323781 Numbers m such that Sum_{d|m} (tau(d)/sigma(d)) is an integer h where tau(k) = the number of the divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).
1, 15, 429, 609, 6003, 9156, 20943, 75579, 90252, 93849, 115773, 331359, 631764, 744993, 817191, 837655, 925083, 1130766, 1141191, 2349087, 2491740, 2512965, 3040728, 3266253, 3796143, 4314891, 4365231, 5025930, 5294340, 6135624, 6629271, 7210671, 10906175
Offset: 1
Keywords
Examples
15 is a term because Sum_{d|15} (tau(d)/sigma(d)) = tau(1)/sigma(1) + tau(3)/sigma(3) + tau(5)/sigma(5) + tau(15)/sigma(15) = 1/1 + 2/4 + 2/6 + 4/24 = 2 (integer).
Programs
-
Magma
[n: n in [1..1000000] | Denominator(&+[NumberOfDivisors(d) / SumOfDivisors(d): d in Divisors(n)]) eq 1]
-
Mathematica
Select[Range[10^5], IntegerQ@ DivisorSum[#, Divide @@ DivisorSigma[{0, 1}, #] &] &] (* Michael De Vlieger, Feb 17 2019 *)
-
PARI
isok(n) = !frac(sumdiv(n, d, numdiv(d)/sigma(d))); \\ Michel Marcus, Feb 16 2019
Formula
A323780(a(n)) = 1.
Comments