cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323842 Number of n-node Stanley graphs without isolated nodes.

Original entry on oeis.org

1, 0, 1, 2, 11, 72, 677, 8686, 152191, 3632916, 118317913, 5271781946, 322549557299, 27208234437984, 3177021912874253, 515436469519284358, 116581257420399219175, 36866447823471507563436, 16339685138335030408029889, 10170100145132835334268145362
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2019

Keywords

Comments

For precise definition see Knuth (1997).
Also, the number of naturally labeled posets on [n] with height at most two and no isolated elements. - David Bevan, Nov 17 2023

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(mul(
          (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
        end:
    g:= proc(n) option remember;
          add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)
        end:
    a:= proc(n) option remember;
          add(g(n-j)*binomial(n, j)*(-1)^j, j=0..n)
        end:
    seq(a(n), n=0..21);  # Alois P. Heinz, Sep 24 2019
  • Mathematica
    b[n_] := b[n] = Sum[Product[(2^(i+k) - 1)/(2^i - 1), {i, n-k}], {k, 0, n}];
    g[n_] := g[n] = Sum[b[n-j] Binomial[n, j] (-1)^j, {j, 0, n}];
    a[n_] := a[n] = Sum[g[n-j] Binomial[n, j] (-1)^j, {j, 0, n}];
    a /@ Range[0, 21] (* Jean-François Alcover, May 24 2020, after Alois P. Heinz *)
  • Maxima
    P(n, k, x):=if k<0 or n<0 then 0 else if k=0 then 1 else x*P(n, k-1, x)+
    2^k*P(n-1, k, (x+1)/2);
    a(n):=sum(P(n-k, k, -1), k, 0, n);
    makelist(a(n), n, 0, 10);
    /* Vladimir Kruchinin, Mar 08 2020 */

Formula

a(n) = Sum_{j=0..n} (-1)^j * C(n,j) * A135922(n-j). - Alois P. Heinz, Sep 24 2019
a(n) = Sum_{k=0..n} P(n-k, k, -1), where P(n, k, x) = x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2). - Vladimir Kruchinin, Mar 09 2020
G.f.: g(1,0), where g(u,v) = 1 + x*((v-1)*g(u,v) + g(2*u,u+v)). - David Bevan, Jul 28 2022
G.f.: 1/(1+z) * Sum_{k>=0} (z^k / Prod_{i=2..k} (1 - (2^i-2)*z)). - David Bevan, Nov 17 2023; simplified on Jul 25 2024

Extensions

More terms from Alois P. Heinz, Sep 24 2019