A323842 Number of n-node Stanley graphs without isolated nodes.
1, 0, 1, 2, 11, 72, 677, 8686, 152191, 3632916, 118317913, 5271781946, 322549557299, 27208234437984, 3177021912874253, 515436469519284358, 116581257420399219175, 36866447823471507563436, 16339685138335030408029889, 10170100145132835334268145362
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..115
- David Bevan, Gi-Sang Cheon and Sergey Kitaev, On naturally labelled posets and permutations avoiding 12-34, arXiv:2311.08023 [math.CO], 2023.
- D. E. Knuth, Letter to Daniel Ullman and others, Apr 29 1997. [Annotated scanned copy, with permission]
Programs
-
Maple
b:= proc(n) option remember; add(mul( (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n) end: g:= proc(n) option remember; add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n) end: a:= proc(n) option remember; add(g(n-j)*binomial(n, j)*(-1)^j, j=0..n) end: seq(a(n), n=0..21); # Alois P. Heinz, Sep 24 2019
-
Mathematica
b[n_] := b[n] = Sum[Product[(2^(i+k) - 1)/(2^i - 1), {i, n-k}], {k, 0, n}]; g[n_] := g[n] = Sum[b[n-j] Binomial[n, j] (-1)^j, {j, 0, n}]; a[n_] := a[n] = Sum[g[n-j] Binomial[n, j] (-1)^j, {j, 0, n}]; a /@ Range[0, 21] (* Jean-François Alcover, May 24 2020, after Alois P. Heinz *)
-
Maxima
P(n, k, x):=if k<0 or n<0 then 0 else if k=0 then 1 else x*P(n, k-1, x)+ 2^k*P(n-1, k, (x+1)/2); a(n):=sum(P(n-k, k, -1), k, 0, n); makelist(a(n), n, 0, 10); /* Vladimir Kruchinin, Mar 08 2020 */
Formula
a(n) = Sum_{j=0..n} (-1)^j * C(n,j) * A135922(n-j). - Alois P. Heinz, Sep 24 2019
a(n) = Sum_{k=0..n} P(n-k, k, -1), where P(n, k, x) = x*P(n, k-1, x) + 2^k*P(n-1, k, (x+1)/2). - Vladimir Kruchinin, Mar 09 2020
G.f.: g(1,0), where g(u,v) = 1 + x*((v-1)*g(u,v) + g(2*u,u+v)). - David Bevan, Jul 28 2022
G.f.: 1/(1+z) * Sum_{k>=0} (z^k / Prod_{i=2..k} (1 - (2^i-2)*z)). - David Bevan, Nov 17 2023; simplified on Jul 25 2024
Extensions
More terms from Alois P. Heinz, Sep 24 2019
Comments