A323844 Square array T(b,m), read by descending antidiagonals: Number of winning length m strings with a b-symbol alphabet in "same game" (b >= 2, m >= 0).
1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 6, 3, 4, 0, 1, 12, 15, 4, 5, 0, 1, 26, 33, 28, 5, 6, 0, 1, 58, 105, 64, 45, 6, 7, 0, 1, 126, 297, 268, 105, 66, 7, 8, 0, 1, 278, 879, 844, 545, 156, 91, 8, 9, 0, 1, 602, 2631, 3100, 1825, 966, 217, 120, 9, 10, 0, 1
Offset: 0
Examples
Table T(b,m) (with rows b >= 2 and columns m >= 0) begins as follows: 1, 0, 2, 2, 6, 12, 26, 58, 126, 278, 602, 1300, 2774, ... 1, 0, 3, 3, 15, 33, 105, 297, 879, 2631, 7833, 23697, 71385, ... 1, 0, 4, 4, 28, 64, 268, 844, 3100, 10876, 39244, 142432, 518380, ... 1, 0, 5, 5, 45, 105, 545, 1825, 7965, 30845, 128945, 527785, 2202785, ... 1, 0, 6, 6, 66, 156, 966, 3366, 16986, 70386, 332646, 1484676, 6922146, ... 1, 0, 7, 7, 91, 217, 1561, 5593, 32011, 139363, 732697, 3492265, 17899609, ... 1, 0, 8, 8, 120, 288, 2360, 8632, 55224, 249656, 1443128, 7243552, 40366040, ... ... 11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
Links
- Chris Burns and Benjamin Purcell, A note on Stephan's conjecture 77, preprint, 2005. [Cached copy]
- Chris Burns and Benjamin Purcell, Counting the number of winning strings in the 1-dimensional same game, Fibonacci Quarterly, 45(3) (2007), 233-238.
- Sascha Kurz, Polynomials in "same game", 2001. [ps file]
- Sascha Kurz, Polynomials for same game, 2001. [pdf file]
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
Crossrefs
Formula
T(b=2, m) = 2^m - 2 * m * Fibonacci(m-2) - (-1)^m - 1 for m >= 2 (Burns and Purcell (2005, 2007)).
For the columns, Kurz (2001) says: "Because of the fact, that a winning m-digit b-ary string can only have floor(m/2) different digits, there exists for T(b,m) a polynomial with maximal degree floor(m/2)." (I changed his n to m and his a(n,b) to T(b,m).)
Kurz (2001) goes on to list the following formulas (without proof) for the columns of the array (valid for b >= 1):
T(b,1) = 0;
T(b,2) = b;
T(b,3) = b;
T(b,4) = 2*b^2 - b;
T(b,5) = 5*b^2 - 4*b;
T(b,6) = 5*b^3 - 3*b^2 - b;
T(b,7) = 21*b^3 - 35*b^2 + 15*b;
T(b,8) = 14*b^4 - 36*b^2 + 23*b;
T(b,9) = 84*b^4 - 204*b^3 + 162*b^2 - 41*b;
T(b,10) = 42*b^5 + 60*b^4 - 405*b^3 + 465*b^2 - 161*b;
T(b,11) = 330*b^5 - 990*b^4 + 990*b^3 - 341*b^2 + 12*b.
It is not clear whether Kurz's formulas are statements of fact (with an easy proof) or just conjectures.
From the results in the Crossrefs, we may also conjecture the following:
T(b,12) = 132*b^6 + 495*b^5 - 3135*b^4 + 5066*b^3 - 3384*b^2 + 827*b;
T(b,13) = 1287*b^6 - 4290*b^5 + 4004*b^4 + 585*b^3 - 2392*b^2 + 807*b;
T(b,14) = 429*b^7 + 3003*b^6 - 20020*b^5 + 40495*b^4 - 38402*b^3 + 18095*b^2 - 3599*b;
T(b,15) = 5005*b^7 - 17017*b^6 + 7098*b^5 + 38500*b^4 - 62455*b^3 + 36495*b^2 - 7625*b;
T(b,16) = 1430*b^8 + 16016*b^7 - 113568*b^6 + 266560*b^5 - 308660*b^4 + 197440*b^3 - 73376*b^2 + 14159*b.
It seems that, for m >= 2, T(b,m) is a polynomial of b of degree floor(m/2) with a leading coefficient equal to A238879(m-2). In other words, the leading coefficient equals (2/(m+2)) * binomial(m, m/2), if m is even >= 2, and binomial(m, (m - 3)/2) if m is odd >= 3.
Comments