A323846 Array read by antidiagonals: T(m,n) = number of m X n matrices M with entries {0,1,2} that have M_{1,1}=0, M_{m,n}=2, are such that the rows and columns are monotonic without jumps of 2, and satisfy M_{(i+1),(j+1)} = M_{i,j} + (0 or 1).
0, 0, 0, 1, 0, 1, 3, 4, 4, 3, 6, 16, 25, 16, 6, 10, 41, 94, 94, 41, 10, 15, 85, 266, 386, 266, 85, 15, 21, 155, 632, 1247, 1247, 632, 155, 21, 28, 259, 1332, 3423, 4657, 3423, 1332, 259, 28, 36, 406, 2570, 8342, 14795, 14795, 8342, 2570, 406, 36, 45, 606, 4631, 18546, 41586, 54219, 41586, 18546, 4631, 606, 45
Offset: 1
Examples
Array begins: 0 0 1 3 6 10 ... 0 0 4 16 41 85 ... 1 4 25 94 266 632 ... 3 16 94 386 1247 3423 ... 6 41 266 1247 4657 14795 ... 10 85 632 3427 14795 54219 ... ... The 4 examples when m=2 and n=3 are 011 011 012 012 012 112 012 112
References
- D. E. Knuth, Email to N. J. A. Sloane, Feb 05 2019.
Links
- Alois P. Heinz, Antidiagonals n = 1..80, flattened
Crossrefs
Extensions
More terms from Alois P. Heinz, Feb 07 2019
Comments