A323858 Number of toroidal necklaces of positive integers summing to n.
1, 1, 3, 5, 10, 14, 31, 44, 90, 154, 296, 524, 1035, 1881, 3636, 6869, 13208, 25150, 48585, 93188, 180192, 347617, 673201, 1303259, 2529740, 4910708, 9549665, 18579828, 36192118, 70540863, 137620889, 268655549, 524873503, 1026068477, 2007178821, 3928564237
Offset: 0
Keywords
Examples
Inequivalent representatives of the a(6) = 31 toroidal necklaces: 6 15 24 33 114 123 132 222 1113 1122 1212 11112 111111 . 1 2 3 11 11 12 12 111 5 4 3 13 22 12 21 111 . 1 1 1 2 11 1 2 3 2 11 4 3 2 2 11 . 1 1 1 1 1 2 1 2 1 3 2 2 . 1 1 1 1 2 . 1 1 1 1 1 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- S. N. Ethier, Counting toroidal binary arrays, J. Int. Seq. 16 (2013) #13.4.7.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]]; Table[Length[Join@@Table[Select[ptnmats[k],neckmatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,10}]
-
PARI
U(n,m,k) = (1/(n*m)) * sumdiv(n, c, sumdiv(m, d, eulerphi(c) * eulerphi(d) * subst(k, x, x^lcm(c,d))^(n*m/lcm(c, d)))); a(n)={if(n < 1, n==0, sum(i=1, n, sum(j=1, n\i, polcoef(U(i, j, x/(1-x) + O(x*x^n)), n))))} \\ Andrew Howroyd, Aug 18 2019
Extensions
Terms a(18) and beyond from Andrew Howroyd, Aug 18 2019
Comments