cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323866 Number of aperiodic toroidal necklaces of positive integers summing to n.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 18, 42, 72, 145, 262, 522, 960, 1879, 3531, 6831, 13013, 25148, 48177, 93186, 179507, 347509, 671955, 1303257, 2527162, 4910681, 9545176, 18579471, 36183505, 70540861, 137603801, 268655547, 524842088, 1026067205, 2007118657, 3928564113
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional (Lyndon word) case is A059966.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			Inequivalent representatives of the a(6) = 18 toroidal necklaces:
  [6] [1 5] [2 4] [1 1 4] [1 2 3] [1 3 2] [1 1 1 3] [1 1 2 2] [1 1 1 1 2]
.
  [1] [2] [1 1]
  [5] [4] [1 3]
.
  [1] [1] [1]
  [1] [2] [3]
  [4] [3] [2]
.
  [1] [1]
  [1] [1]
  [1] [2]
  [3] [2]
.
  [1]
  [1]
  [1]
  [1]
  [2]
		

Crossrefs

Programs

  • GAP
    List([0..30], A323866); # See A323861 for code; Andrew Howroyd, Aug 21 2019
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    Table[If[n==0,1,Length[Union@@Table[Select[ptnmats[k],And[apermatQ[#],neckmatQ[#]]&],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]]],{n,0,10}]

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 21 2019