A323866 Number of aperiodic toroidal necklaces of positive integers summing to n.
1, 1, 1, 3, 5, 12, 18, 42, 72, 145, 262, 522, 960, 1879, 3531, 6831, 13013, 25148, 48177, 93186, 179507, 347509, 671955, 1303257, 2527162, 4910681, 9545176, 18579471, 36183505, 70540861, 137603801, 268655547, 524842088, 1026067205, 2007118657, 3928564113
Offset: 0
Keywords
Examples
Inequivalent representatives of the a(6) = 18 toroidal necklaces: [6] [1 5] [2 4] [1 1 4] [1 2 3] [1 3 2] [1 1 1 3] [1 1 2 2] [1 1 1 1 2] . [1] [2] [1 1] [5] [4] [1 3] . [1] [1] [1] [1] [2] [3] [4] [3] [2] . [1] [1] [1] [1] [1] [2] [3] [2] . [1] [1] [1] [1] [2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- S. N. Ethier, Counting toroidal binary arrays, J. Int. Seq. 16 (2013) #13.4.7.
Crossrefs
Programs
-
GAP
List([0..30], A323866); # See A323861 for code; Andrew Howroyd, Aug 21 2019
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]]; Table[If[n==0,1,Length[Union@@Table[Select[ptnmats[k],And[apermatQ[#],neckmatQ[#]]&],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]]],{n,0,10}]
Extensions
Terms a(16) and beyond from Andrew Howroyd, Aug 21 2019
Comments